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 Dear Editor,

Recently,  the  coherent  modified  Redfield  theory  (CMRT)  has  been  widely
used to simulate the excitation-energy-transfer (EET) processes in photosyn-
thetic systems. However, the numerical simulation of the CMRT is computa-
tionally expensive when dealing with large-scale systems, e.g. photosystem I
(PSI) and II (PSII). On the other hand, the chemical reaction and fluorescence
loss  traditionally  treated  by  the  non- Hermitian  Hamiltonian  approach  may
result  in  significantly  error  in  a  wide range of  parameters.  To address these
issues, we introduce a quantum jump approach (QJA) based on the CMRT to
simulate the evolution of photosynthetic complexes including both the chem-
ical reaction and fluorescence loss. The QJA shows higher accuracy and effi-
ciency  in  simulating  the  EET  processes.  The  QJA-CMRT  approach  may
provide  a  powerful  tool  to  design  and  optimize  artificial  photosynthetic
systems, which benefits future innovation in the field of energy.

 INTRODUCTION
During the past few decades, substantial progress has been made in eluci-

dating the mechanism of photosynthetic energy transfer. Nevertheless, simu-
lating  the  full  quantum  dynamics  in  natural  photosynthetic  complexes
(containing  100-300  chromophores)  remains  computationally  challenging
due to  the  demanding  computational  resources,  e.g.,  the  hierarchical  equa-
tion of motion.1 Consequently, there exists a critical need to develop compu-
tationally-efficient  yet  theoretically-accurate frameworks  capable  of  model-
ing the non-Markovian quantum dynamics therein.

In this Letter, we introduce a quantum jump approach (QJA)2,3 based on the
coherent  modified  Redfield  theory  (CMRT)4 to  simulate  the  evolution  of
photosynthetic complexes under the influence of the chemical reaction (CR)
and  fluorescence  loss  (FL).  The  CMRT  provides  a  complete  description  of
quantum  dynamics  of  the  system’s  density  matrix  with  the  interaction
between the  system and the  environment.  Based on the  CMRT,  we use the
QJA to transform a set of equations of motion into a stochastic Schrödinger
equation,  and  thus  significantly  reduce  the  computational  resources.
Combining  these  two  approaches,  simulations  of  photosynthetic  light
harvesting can be achieved with high accuracy and efficiency.

In our QJA-CMRT approach, a non- Hermitian Hamiltonian method, which
is equal to the phenomenological density ma- trix equation demonstrated in
Ref. 5, is used to produce the evolution of the deterministic evolution part of
the ensemble. As discus- sions in Ref. 5, this method is an approxi- mation of
the CMRT master equation. The deviation between these two theories will be
notable when the FL is relatively significant, i.e., when the ratio of the FL rate
to the CR rate  is  large5,6 However, for  the parameter  regime of  most  photo-
synthetic complexes, these two theories have a good agreement, as shown in
NUMERICAL  SIMULATION  AND  DISCUSSION.  Hence,  introducing  the  non-
Hermitian  Hamiltonian  method  into  our  QJA  imposes  minimal  effects  on
accuracy while significantly accelerating the simulation for large systems.

In this Letter,  we begin by outlining the principle of QJA through a simpli-
fied dimer model. We then apply the method to simulate the EET processes in
the dimer, taking into account the roles of CR and FL. To highlight the advan-
tages of the QJA-CMRT approach, its performance is compared with that of
QUTIP.7 Finally, the main conclusions of this study are summarized.

 MODEL
We  introduce  the  QJA-CMRT approach  by  a  dimer  model,  as  schemati-

cally  illustrated by Figure 1.  Each site in our model  represents a chlorophyll,

described  as  a  two-level  system.  Assuming ℏ =  1,  the  Hamiltonian  for  this
model is given by 

HS = ∑2

n=1
En|n⟩⟨n|+J(|1⟩⟨2|+ |2⟩⟨1 |) , (1)

En J
|n⟩

where  denotes the site energy of the nth state,  represents the electronic-
coupling  strength  between  the  two  states.  Here,  is  the  product  state
where the nth site is in the excited state while the other site is in the ground
state, i.e., 

|1⟩= |e1⟩⊗ |g2⟩, |2⟩= |g1⟩⊗ |e2⟩ (2)

|ei⟩(|gi⟩)
|G⟩= |g1⟩⊗ |g2⟩ E0 = 0

where  refers to the excited (ground) state of the ith site. The ground
state of this dimer is  with the energy .

 Master equation including chemical reaction and fluorescence loss
According  to  the  CMRT,4 the  evolution  of  the  system  is  governed  by  the

master equation 

∂tρ=−i[HS,ρ]−Lpd (ρ) (3)

ρwhere  is the density matrix of the system, and 

Lpd (ρ) = ∑2
m,n=1

Rmn

2
({A†

mnAmn,ρ}−2AmnρA†
mn) (4)

Rmn

Amn = |m⟩⟨n|
|n⟩ |m⟩

is the Lindblad term describing the dissipation and dephasing of the system,
with  being  the  dissipation  rate  (  m  ≠  n  )  and  dephasing  rate  (m=n),
{A,B}=AB+BA  being  the  anti-commutator,  and  being  the  jump
operator from  to .

|2⟩ |G’’⟩
Rcr

|j⟩
|G⟩ Rfl

We  assume  that  the  CR  takes  place  at  site  2.  The  CR  process  could  be
modeled as the decay of the excitation from  to the final state of  with
the rate . Moreover, due to the spontaneous emission of the excited state,
the  excitation  could  decay  from  the  single-excitation  state  (j=1,2)  to  the
ground state  by the FL with the rate . In Ref. 5, it has been shown that
the traditional treatment of the CR by an exponential decay would result in a
significant deviation of theoretical prediction from the experimental observa-
tion,  and  thus  it  should  be  treated  by  the  quantum  master  equation.  As  a
result, we follow the approach to treat the CR and the FL. In the master equa-
tion, these two effects can be respectively described by the Lindblad term as 

Lcr (ρ) =
Rcr

2
({A†

crAcr,ρ}−2A†
crρAcr) (5)

 

Lfl (ρ) = ∑2

n=1

Rfl

2
({A†

nAn,ρ}−2A†
nρAn) (6)

Acr = |G’⟩⟨2|, An = |G⟩⟨n|
Rcr Rfl

where  are  respectively  the  jump operators  of  the
CR and  FL.  Generally  speaking,  the  rates  and  depend  on  the  system
parameters,  such  as  the  temperature,  the  spectral  density,  and  the  level
spacing between the two states connected by the quantum jump.8

Rcr/Rfl

As the temperature increases, both rates will be enlarged. Moreover, when
the  level  spacing  between  the  two  states  approaches  the  maximum  of  the
spectral  density,  the rate  will  also be amplified.  If  the ratio  increases,
the  efficiency  will  be  enhanced;  otherwise,  the  photosynthesis  will  become
less efficient.

Taking both CR and FL into consideration, the total master equation of the
system can be written as: 
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∂tρ=−i[HS,ρ]−Lpd (ρ)−Lcr (ρ)−Lfl (ρ) . (7)

 Quantum jump approach

j+ j−
Rj+ (t)> 0

Aj+ Rj− (t)< 0 Aj−

j+

In  this  subsection,  we  provide  an  overview  of  the  QJA2,3 to  unravel  the
master  equation.  In  the  Markovian  regime,  all  decay  rates  remain  positive,
whereas in the non-Markovian regime, some decay rates may become nega-
tive during some time intervals. Consequently, the decay channels are classi-
fied  into  two  categories,  i.e.,  positive  and  negative,  denoted  by  and  ,
respectively. Their corresponding decay rates (jump operators) are 
( (t))  and  ( (t)). Moreover,  as  the  rates  of  CR  and  FL  consis-
tently remain positive, they are thereby assigned to the positive channels  at
all  times.  In  order  to  calculate  the  system’s  evolution,  we  consider M inde-
pendent samples evolving in parallel,  and the system’s actual dynamics can
be obtained by averaging over these M trajectories. The density matrix of the
system could be written as 

ρ(t) =
1
M ∑M

α=1
|ψα (t)⟩⟨ψα (t) |, (8)

|ψα (t)⟩

ρ(0) =
(|1⟩⟨1|+ |2⟩⟨2 |)

2
|ψα (t)⟩

where  is the state of the αth sample at time t. The initial state of the
system  is  assumed  to  be  a  maximum-mixed  state,  i.e.,

.  Up  to  a  normalization  factor,  after  a  sufficiently-
small time step, the state  will deterministically evolve into 

|ϕα( t+δt)⟩= exp(−iHδt) |ψα( t)⟩ ≈ (1− iHδt)|ψα (t)⟩, (9)

with the non-Hermitian Hamiltonian H: 

H= HS− i∑j+

Rj+ (t)
2

A†
j+ (t)Aj+ (t)− i∑j−

Rj− (t)
2

A†
j− (t)Aj− (t) . (10)

|ψα( t+δt)⟩= |ϕα(t+δt)⟩/ ||ϕα(t+δt)⟩ || .

Aj+ (t) |ψα( t)
∥Aj+ (t) |ψα( t)∥

δt

After  normalization,  the  state  is 
As  a  result  of  the  decay  channels,  the  deterministic  evolution  has  a  certain
probability  to  be  interrupted  by  quantum  jumps  to  the  other  states.  For  the

positive channels,  the system can jump to the state  with the

probability during a sufficiently-short time interval . 

Pj+
α (t) = ⟨ψα (t)

∣∣A†
j+

(
t)Aj+( t)|ψα (t)⟩×Rj+ (t)δt. (11)

For the negative channels, the system can jump to the state 

|ψα( t)⟩=
Aj− (t) |ψα( t)⟩
∥Aj− (t) |ψα( t)⟩

, (12)

where the jump operator is 

Aj− (t) = |ψα( t)⟩⟨ψα(t)| . (13)

The corresponding probability is 

Pj−
αα′ (t) = ⟨ψα′ (t)

∣∣A†
j−

(
t)Aj−( t)|ψα′ (t)⟩×

Mα′ (t)
Mα (t)

|Rj−( t)|δt. (14)

The  decay  processes  involving  positive  and  negative  channels  can  be

en
er

gy

 

⟩ ⟩ ⟩ ⟩Figure 1.  (A) An energy diagram of the dimer system. The two single-excitation states are |1  and |2 .  The ground state and the product state of the CR are |g  and |g′ ,
respectively. (B) The population dynamics of the dimer system are respectively simulated by the QJA (solid line) and the QUTIP (dashed line). (C) The dependence of effi-
ciency η on the electronic coupling J and the FL rate γ. The energy gap ∆ and the CR rate are fixed at 763 cm–1 and 1.33 cm–1. (D) The scaling of the computational time t
against the number of sites N by the two approaches.
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|ψα⟩ → |ψα′ ⟩= AJ|ψα⟩/| |AJ|ψα⟩ ||

|ψα⟩ ← |ψα′ ⟩

interpreted as follows. Consider a given channel j. During some time interval,
when Rj >  0,  the  quantum  jump  to  proceed  in  the  positive  direction,  i.e.,

.  However,  during  the  other  time  interval,
when Rj <  0,  the  quantum  jump  occurs  in  the  reverse  direction,  i.e.,

.  In  other  words,  the  positive  jump  losses  the  coherence,  while
the negative jump recovers the coherence and thus the memory. Using Equa-
tions (10)-(14), the density matrix of the system at t + δt reads 

ρ̄(t+δt) = ∑α

Mα

M
[(1−∑j+ Pj+

α (t)−∑j− P
j−
αα′ (t))

|ϕα( t+δt)⟩⟨ϕα(t+δt)|
|| |ϕα( t+δt)⟩||2

+∑j+ Pj+
α (t)

Aj+ (t) |ψα( t)⟩⟨ψα(t)|A†
j+

⟨ψα (t)
∣∣A†

j+Aj+( t)|ψα (t)⟩
+∑α′ ,j− P

j−
αα′ (t) |ψα′ ⟩⟨ψα′ |].

(15)

≫

|ψα(t)⟩

When  the  ensemble  is  sufficiently  large,  i.e.,  M  1,  Equation  (15)  fulfills
Equation (7). In the case of N sites, the QJA obtains the state evolution in δt
through  computing  the  equations  about  state  vector  | ,  whose
complexity  is  linearly  related  to N.  Comparing  to  the  direct  unravelling  the
master Equation (7) by the QUTIP, whose complexity is related to N2, the QJA
may show some superiority in obtaining the same result. The explicit depen-
dency of the running time t on N for these two methods are compared in next
section. Therefore, the QJA is a powerful tool to simulate the evolution of our
photosynthetic systems.

NUMERICAL SIMULATION AND DISCUSSION
In this section, we utilize the QJA-CMRT to simulate the EET processes in

several different model systems, including the dimer model and a stochastic
system based on PSI. We have simulated the evolution of the systems using
CMRT  master  equation  supported  by  QUTIP  and  CMRT-QJA,  labeled  by
QUTIP and QJ below, respectively.

The dimer model
The dimer model is schematically illustrated in Figure 1. The Hamiltonian in

the site basis reads 

H=

[
E0 J
J E0 +Δ

]
. (16)

γ
γ

γ

In practical, the system is initially in the maximum-mixed state of all sites,
due  to  the  wide  spread  of  the  spectrum  of  sunlight.  In  our  simulation,  we
adopt  the  same parameters  as  the  eC-A1 and eC-B1 sites  of  PSI,9 i.e.,  E0 =
13201 cm−1 and ∆ = 763 cm−1.  The rates of CR and FL are respectively  ~
1.33 cm−1 and  ~ 8.33×10−3 cm−1.10 Figure 1 illustrate the population dynam-
ics of  the  dimer  model  simulated  by  the  QJA  and  QUTIP,  which  are  repre-
sented by solid and dashed lines respectively. Clearly, the results by the two
methods  are  in  perfect  agreement,  which  strongly  support  the  accuracy  of
the QJA. In addition, it is worth noting that the equilibrium time of the system
varies in  ~ 10-25 ps,  being close to the EET time scale in  Ref.  10,  following
the  variation  of  electronic  coupling J,  but  have  merely  no  response  to  the
change of  in a wide parameter regime from 10−3~10−1 cm−1. This fact indi-
cates  that  couplings  between chromophores  play  a  more  crucial  role  in  the
evolution than the correlations between the system and the environment.

”η γ
”η

γ
γ

The efficiency  against J and  is investigated by using QJA as shown in
Figure  1.  We  could  find  that  the  efficiency  rises  along  with  increasing J,
while  it  monotonically  falls  as  increases,  which  is  in  agreement  with  our
physical intuition, that the electronic coupling J (the system-bath coupling )
promotes (suppresses) the EET.

 The N-dependency of the computational time of QJA and QUTIP
In this subsection, we compare the dependency of the computational time

t  on the number  of  the  sites N of  the  QJA and QUTIP.  We assume that  the
relation between t and N can be characterized by a power-law expression as 

t= aNb, (17)

where a and b are constants.  Generally speaking,  the parameter a is related
to the performance of the computer and the size of the ensemble, while b is

R2
QJA R2

QUTIP

an  intrinsic  property  of  the  algorithm.  Thus,  we  focus  on  the  value  of  b.  In
Figure  1,  we  compare  the  performance  of  the  QJA  and  QUTIP.  In  order  to
better  show  the  scaling  of N,  we  have  normalized  the  simulation  data  by
using  the  first  computational  time  of  each  method  as  1.  The  multiple-site
model  using  in  our  simulation  is  based  on  the  PSI,  in  which N sites  are
randomly  selected  while  the  couplings  between  any  two  sites  therein  are
retained as the original PSI. According to our numerical simulations which are
not shown here, for a given N the conclusion about the computation times by
the two approaches will  not  be changed if  we choose different sets of  sites
for simulation. The size N in our simulation varies from 10 to 100, with a step
of 5. As illustrated in Figure 1, the trend can be well fitted with a linear model,
with R-squared as  = 0.9998 and  = 0.9981.  The slope b of  QJA is
2.0 is much smaller than that of QUTIP, i.e., 4.8. This observation implies that
the QJA is much more efficient than the QUTIP in simulating photosynthetic
systems,  especially  when  applying  to  the  large-scale  systems  like  PSI  and
PSII.

 CONCLUSION
In summary, we have introduced the QJA based on the CMRT to simulate

the EET processes in photosynthetic systems with the CR and FL. The QJA-
CMRT  approach  is  capable  of  accurately  simulating  the  EET  processes  in
large-scale systems, such as PSI and PSII,  while maintaining a high level  of
computational efficiency. Compared with the CMRT unravelled by the QUTIP,
the QJA-CMRT approach has a much lower computational complexity, which
has  an N 2 . 0 dependency  on  the  number N of  sites.  In  previous  studies,  the
investigation has been focused on small-scale photosynthetic systems for its
simplicity to simulate. With the QJA-CMRT approach, it is possible to investi-
gate the spacial and energetic structure of large scale systems, such as PSI
and PSII,  which is  a significant step towards the design and optimization of
artificial photosynthetic systems.
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