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Quantum battery (QB) is an application of quantum thermodynamics which uses quantum effects to store
and transfer energy, overcoming the limitations of classical batteries and potentially improving the QB’s perfor-
mance. However, due to the interaction with the external environment, it leads to decoherence and thus reduces
both the lifetime and the charging efficiency of QB. Here, we propose suppressing the environmental dissipation
in the energy-storage process of the QB by exploiting both the electromagnetically-induced-transparency (EIT)
effect and bound states. By constructing a hybrid system composed of a four-level atom and a coupled-cavity
array, two bound states are formed in the system when the energy of the QB is in the energy band of the cavity
array. Environmental dissipation is significantly inhibited due to the bound state and EIT effects, which extends
the lifetime of the QB. We show that the charging efficiency of the QB is optimal when the energy of the QB is
in resonance with the cavity. In addition, there is an optimal coupling strength between the two adjacent cavities,
which helps to improve the performance of the QB. Our research has achieved the realization of long-term energy
storage while improving the charging efficiency of QB, which has practical implications for the realization

of QB.
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I. INTRODUCTION

In recent decades, due to the application of nanomechan-
ical electronic devices, quantum technology has gradually
attracted broad interest [1,2]. Quantum thermodynamics fo-
cuses on the transfer and storage of energy at the nanoscale
[3-7]. It studies work and entropy in a quantum context
[8-11]. The laws of classical thermodynamics have been
reconsidered to describe heat engines and energy-storage sys-
tems based on quantum effects, breaking the limits of classical
physics [12—15]. As a nanoscale energy storage and conver-
sion device, the aim of the design of the quantum battery (QB)
is fundamentally different from that of conventional batter-
ies by exploiting the properties of quantum thermodynamics
[16-18].

The QBs utilize quantum effects such as entanglement
[16,19-22] and coherence [23-26] to achieve charging power
and battery capacity higher than those of their classical coun-
terparts [17,27-29]. The basic mechanism underlying the QBs
is that, for example, a two-level system acts as a QB and
another two-level system [30-33] or external field acts as
a charger [34-37]. Here, due to their interaction, the en-
ergy can be coherently transferred between the charger and
the QBs and thus results in the charged QBs. It has been
experimentally demonstrated that charging of the QBs can
be achieved in various physical systems including nuclear
magnetic resonance [38], superconducting circuits [39,40],
photonic systems [41], and organic microcavities [42]. An
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efficient QB scheme is essential for its implementation and fu-
ture applications, e.g., utilizing the collective-excitation mode
[43] and a one-dimensional dimerized XY chain as a spin
QB [44]. Since the realization of the QB has generally been
considered in the context of open quantum systems [45,46],
a serious problem for QB may occur. Due to the decoherence
caused by the external environment, the charging efficiency
of the QB will be reduced, and the stored energy will be
depleted [47]. Various methods have been proposed to beat the
dissipation, e.g., feedback control [48] and Floquet engineer-
ing [49]. However, how to improve the charging efficiency of
QBs while supressing the decoherence caused by the external
environment is an intriguing challenge.

As known to all, electromagnetically-induced transparency
(EIT) is a quantum-coherence phenomenon [50], which is
widely observed in atomic or molecular systems. When a
probe field passes a medium with resonant two-level atoms,
i.e., the ground state and a lossy excited state, the transmit-
tance of the probe field will significantly decrease due to the
absorption. However, if a control field is introduced to induce
the transition between the lossy excited state and a metastable
state, the probe field will pass the medium as if it is transpar-
ent, and thus it is called EIT. There are typically three kinds
of configurations for the EIT, i.e., the ladder type, the V-type,
and the A type [51]. In the EIT, there exists a dark state, i.e.,
the superposition of the ground state and the metastable state
[52]. Due to the dark state being void of the lossy excited state,
the probe field can pass the medium without absorption. The
dark state has been applied in different physical processes,
e.g., coherent energy transfer of artificial light harvesting [53]
and perfect state transfer in optomechanical systems [54,55].
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Recently, remote charging and degradation suppression of the
QB has been proposed when bound states form in the total
system including the charger, the QB, and the electromagnetic
field [56,57]. In this work, inspired by these discoveries, we
theoretically propose a QB scheme utilizing a hybrid system
composed of a four-level atom as the QB and a coupled-
cavity array as the charger, which can be implemented with
superconducting transmission line resonators [58—61] and a
superconducting charge qubit [62,63]. By applying two co-
herent light beams to the four-level atom, we can realize
a quasi-two-level system with a dark state and the ground
state for the QB. We show that the interaction between the
dark state of the QB and the coupled-cavity array gives rise
to two bound states in the hybrid system. Remarkably, the
bound states assisted by the dark state significantly suppress
the environmental dissipation, thereby enhancing the QB’s
lifetime. Furthermore, our results reveal that the extractable
work, i.e., the ergotropy, reaches its maximum when the dark
state is resonant with the bare frequency of the cavity. We
further demonstrate that the coupling strength between adja-
cent cavities can be optimized to enhance the performance of
the QB. Unlike in the traditional dark-state QB [37,46,64,65],
we propose a charging and energy-storage mechanism that
integrates the effects of the EIT with the formation of bound
states. The introduction of EIT not only enhances the coher-
ence between the QB and its environment but also facilitates
the formation of the dark state. These special states including
the bound states can significantly extend the lifetime of the
QB while simultaneously improving its charging efficiency.

This article is structured as follows. In the next section,
we introduce our QB protocol. By using the dark state, we
obtain the effective Hamiltonian of the QB interacting with
the coupled-cavity array, as derived in detail in Appendix A.
It is demonstrated that the eigenenergies of the bound states
determine the quantum dynamics of the dark state, with its
detailed derivation shown in Appendix B. Then, in Sec. III,
we perform numerical simulations. The relationship between
the number of bound states and the energy of the dark state
is explored. We use both analytical and numerical methods to
verify that, in the presence of two bound states, environmental
dissipation can be significantly suppressed due to the combi-
nation of the bound states and the dark state. The charging
efficiency of the QB is optimal when the energy of the QB is
in resonance with the cavity. In Sec. IV, we summarize our
main findings.

II. SCHEME

To study the effects of the environmental dissipation on the
energy storage process of a QB, we consider the interaction
between a four-level atom and a coupled-cavity array. As
shown in Fig. 1, we make use of the four-level atom as a tool
for energy storage, i.e., a QB, and the coupled N cavities as
a medium for energy transfer. The Hamiltonian of the system
reads

H =H. +Hp+H, (D

H. = Zwoaj-aj - Z(ajaj-H + aj-de), 2
J J

FIG. 1. Schematic illustration of the charging QB model.
(a) Structure of coupled cavities. (b) A four-level atom, where |d) is
a metastable energy level, |m) is a auxiliary energy level, and |e) is an
excited state energy level. Two pulses are applied at the same time to
induce the transitions of |e) <> |d) and |e) <> |m) with, respectively,
Rabi frequencies €2, and ..

Hp = Qq|d)(d| + Qcle)(e| + 2u|m)(m]
+ Qpe ' e)(d| + Qe |e) (m| + Hec.,  (3)

H; = giaj|g)(d| + g:ajlg)(m| + H.c., 4)

where a; (a;) represents creation (annihilation) of a photon
with frequency wy in the jth cavity; & is the coupling con-
stant between two neighboring resonators; 4, €2, and €2,
are respectively the transition frequencies of the four-level
atom from |g) to |d), |e), and |m). Between the energy levels
|d)(|m)) and |e), we apply a probe (control) light with the
driving frequency wp(.) and the Rabi frequency 2,). g1(g2) is
the coupling constant between the transition |g) <> |d)(|g) <
|m)) and the Oth cavity. In this article, we have assumed /i = 1
for simplicity. Here, we apply the classical drivings which are
respectively in close resonance with the transitions |e) < |d)
and |e) &= |m). Meanwhile, the classical drivings are largely
detuned with the transitions |g) < |d) and |g) < |m). As a
result, in Eq. (3), we do not consider interaction terms between
|g) and |d)/|m). In Eq. (4), there is no interaction between
the intermediate states and the excited state. These could be
achieved by tuning the quantized field in the cavity to be reso-
nant with the transitions |g) < |d) and |g) < |m), while being
largely detuned with the transitions |e) < |d) and |e) & |m).

Assuming the periodical boundary condition, by Fourier
transformation, i.e., aj =Y a,t exp(ikj)/~/N, and with re-
spect to the rotating frame Ugr = exp(—iw,t|e){e|), the total
Hamiltonian (1) can be rewritten as

/ T 1
H = Xk:a)kakak + ﬁ[;gmaugx d + ald) (g)

+ 3 aaflg)ml + aglm) <g|>] + Hj, )
k

Hp = Ale)(el + Qqld)(d] 4 Qulm)(m| + Q,|e)(d]
+ Q.le)(m| + H.c., (6)

where w;, = wy — 2& cos(k) and A, = 2, — w,. Because the
energy levels d and m are metastable, we only consider that
there is dissipation on the energy level d. By introducing an
imaginary part on the energy of |d), i.e., Q4 = Q) — ik /2,
with « being the dissipation rate, we can investigate the effects
of the dissipation. This approach is theoretically sound as
long as the characteristic frequency of the Hamiltonian is
larger than the dissipation rate. By numerical simulations, we
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compare the results by the non-Hermitian Hamiltonian ap-
proach and the Lindblad-form quantum master equation,
which are not shown here. We find that the non-Hermitian
Hamiltonian approach faithfully reproduces the key charac-
teristics of the Lindblad-form quantum master equation ap-
proach, although it may overestimate the decoherence. Here,
the three energy levels d, e, and m constitute the A con-
figuration for the EIT. As shown in Appendix A, we can
diagonalize Hamiltonian (6) as

Hp = E1|E\)(E1| + E2|E2)(Ea| + E3|E3) (E5|, @)
1
i) = B = R — 01)(Ei = R — 02) — 2]1d)

+ Qp(Ei — Qi — w)le) + 2,Qc|m)}, (®)
where |E;)’s are the eigenstates with eigenenergies E/s, v =
A, — R4, and wr = 2, — Q4. The normalization N; con-
stants are given by

NE = |(Ei — Qu — 01)(E; — Qq — 02) — 92|
+IQp(E; — Qu — @) + 12,9 ©)
By tuning g; and g, to satisfy g1/g» = —Q2./£2,,, we have
|E1) = (g11d) + g2lm))/g, with g = ~/g + g5 according to

Eq. (8). The eigenvalues of the Hamiltonian are

Q Q Q2
El"“QzQ +(1-— QZ Qd_lzgzZ (10)
2
~ ’ T 4
E,>~Q+Q —1492/(, (1
QZ
where Q2 = 522—1—92 and Q’:Ae—i—Q?Qm/Qz—i—(l—

Q2/Q%)Q,. We can see that when Q. < €, the dissipation
rate of |E;) is much smaller than the dissipation rates of
|E>) and |E3). Therefore, |E;) is the dark state. In the bases
|E;) (j = 1,2, 3), Hamiltonian (5) can be simplified as

Heir = E\|Ey)(Er| + ) _(oxajay + Jaj|9)(E1| + H.c.),
k

13)

where J = g/ V/N. Notice that |E») and |E3) are decoupled
with the coupled cavities. In other words, we obtain a hybrid
system of a two-level atom and a coupled-cavity array. In this
two-level atom, the excited state is the weakly dissipative state
|E1), while |E5) and |E3) do not interact with the cavity.

In our scheme for QB, we initially inject a photon into one
of the cavities. Due to the coupling between the cavities, the
photon will transfer between the cavities in the array. When
the photon jumps the cavity where the QB is located, the
QB will be charged by the photon because of the interac-
tion between the cavity array and the QB. Since the total
number of excitations is conserved due to Eq. (13), in the
single-excitation subspace, the wave function at time ¢ reads
W (1)) = u(@)]0,Er) + >, ,Bk(t)a,UO, g), where |0) is the vac-
uum state of the coupled-cavity array the initial condition is
u(0) =0, and B;(0) = I/W. Here, u(t) is the probability

amplitude of the cavities in the vacuum while the atom is in
the dark state, and Bi(¢) is the probability amplitude of the
state where there is a photon in the kth cavity mode while the
atom is in the ground state. By the Schrodinger equation, we
can obtain

in=Exu+JY B (14)
k

iBx = wiPr + Ju. (15)

Equations ((14) reveal that because of the interaction between
the atom and the cavity, the energy of the photon can be
transferred to the QB. Applying the Laplace transformation
to Egs. (14) and (15) yields

1
J Zk ip—wy

16
VN p+iE + Y, -2 1o

i(p) =

p+zwk

Although Egs. (14) and (15) can only be solved numerically,
we can find approximate solution in the long-time limit by
using the inverse Laplace transform on Eq. (16). The singu-
larities of Eq. (16) are determined by

2

J
pH+iEi+ ) ——— =0 an
o Pt iwk

Here, the branch cuts are defined by p + iw; = 0, with p €
lipm, ipu], where p,, = —wo — 2§ and py = —wo + 2 are
respectively the lowest and highest energy of the energy band
of the coupled cavities. If p ¢ [—i(wo + 2§), —i(wy — 28)],
we can obtain
N J?
p+1E1+2 : ‘Z|=1dZ22+MZ+1 0, (18)

where M = (ip — wy)/&. When ip > wy + 2, ie., M > 2,
the solution is denoted as p;, while for ip < wy — 2§, i.e.,
M < —2, the solution is denoted as p,. The detailed calcu-
lation is shown in Appendix B.

It is worth noticing that the solutions of Eq. (18) are
the eigenenergy of Hamiltonian (13). By Schrédinger equa-
tion H|®) = E|®), we can obtain

Ei + Z o= (19)

Let us define E = ip. Obviously, Egs. (17) and (19) are
equivalent. Since Eq. (18) determines the eigenenergies of
the hybrid system, it governs the dynamical evolution of
the QB. In other words, it is the spectral characteristics
of the whole system that determine the dynamics of the
QB. At the same time, we know that the branch cut with
p € [ipm, ipy] corresponds to an energy band, while p; and
p> correspond to the two bound states. By substituting the
branch cut and the two singularities of Eq. (18) into the in-

verse Laplace transformation u(t) = f:tl;o dpii(p)e? /2mi of
Eq. (16), we have

2¢ )
u(t) = BiO(p1)e" + BoO(pa)e™ + / C)ei g,
—2¢

(20)
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where
8

EVM? — 4
(ipj — wp)* — 4E?

O(p1) = = —0(p2), 2y

B = — , , . (22)
T (ip; — wo)? — 462 + (ip; — EV)(ip; — wp)
——=f—[(x — w) + E\]
I 4-wr i—
Cx)=—— e (23)
n'(lfl——(UQ'+'X) +

#-(7

Because the energy band p € [ip,,, ipy] of the system leads
to the occurrence of the branch cut, the contribution of the
branch cut tends to zero for a long time due to out-of-phase
interference [66,67]. We can obtain the probability Pg, =
|u(c0)|? in the long-time limit as

Ps, = Q(p1)’[B] + B3 — 2BiBycos(¢n)], (24

where ¢ = ip; — ip>. When the dissipation « of the system
is absent, ¢ is obviously real. As a result, there is coherent
energy exchange between the QB and the charger energy as
manifested by the Rabi-like oscillation due to the existence of
the two bound states. However, when there is only one bound
state, P, = Q(p )2B2, and thus the Rabi-like oscillations dis-
appear. Because of the second law of thermodynamics, not all
of the QB’s energy can be converted to work [26]. Thus, in the
rotating frame we can use the ergotropy [24,25] to evaluate the
amount of extractable work of the QB via

W) = Trlpp(0)Hy] — Telpj()Hp), (25)

where pg(t) = Tr(|y/()) (¥'(¢)]) is the reduced density ma-
trix of the QB, and py(r) = Y, rx(t)|ex) (€| is the passive
state of the QB. r(¢)’s are the eigenvalues of py(¢) in descend-
ing order, and |¢;)’s are the eigenstates of Hj corresponding
to the eigenvalues ¢, in ascending order. The rotating frame is
equivalent to the interaction picture, which aims at eliminating
the time dependence of the Hamiltonian and thus enables
simplification of the calculation and even allows us to obtain
the analytical solution. That is because the transformation
between the different frames should not modify the results of
any physical quantity but simplify the calculation.

During the charging process, the photon is initially injected
into the cavity where the atom is located. By carefully tuning
the parameters such that g, /g» = —Q./2,,, the dark state and
the two bright states are formed, and only the dark state is
coupled to the cavity modes, while the bright states become
decoupled. Consequently, the photon interacts selectively with
the dark state |E ), enabling coherent energy transfer from the
cavity array to the QB, due to the nature of the EIT.

III. NUMERICAL SIMULATION AND DISCUSSION

In our scheme, the energy is stored in the composite system
of the QB and the charger as shown by the Rabi-like oscilla-
tions in Eq. (24). This implies that the number of the bound
states in the open quantum system is important. Therefore,
in Fig. 2, we demonstrate the energy of the bound states and
the energy band w; = wy — 2 cos(k) of the total system. It is
shown that when the energy E; of the QB is within the energy
band, there are two bound states. However, when E| is outside
of the energy band, only one bound state is present. In other

25
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FIG. 2. The dependence of the energy of the bound states on
the energy band and the energy E; of the QB. The blue solid line
is the energy band w; = wy — 2& cos(k) of the coupled-cavity array.
The energies of the bound states denoted by the red and green dots
are obtained by Eq. (19). The parameters used in the calculation are
wo = 20§ and g = 0.3%.

words, we can effectively modify the number of the bound
state in the composite system by tuning the energy of the QB.

In Fig. 3 we investigate the effects of the number of the
bound states in the composite system on the probability of the
dark state of the QB. Therein, we compare the analytical so-
lutions by Eq. (24) and the numerical simulations. It is shown
that the analytical solution coincides with the numerical sim-
ulation except for the short-time regime, since we neglect the
contribution from the branch cut. In addition to the coherent
oscillations, the probability decays due to the dissipation of
the QB. Similarly, we also compare the analytical solution and
the numerical simulation with the Lindblad-form quantum
master equation method [68]. We show that our results are in
good agreement with those by the quantum master equation.
In Fig. 3(a), we observe a significant Rabi-like coherent oscil-
lation between the atoms and the cavity array. This oscillation
reflects the formation of two bound states in the system of
atom-cavity-array; i.e., the energy is repeatedly exchanged
between the atom and the local cavities without propagating
to the cavities far away from the atom. As a result, the energy
is localized in the vicinity of the atom, creating an effective
“protection zone” that significantly inhibits energy losses to
the cavity array. On the contrary, when the energy of the dark
state of the QB is outside of the energy band in Fig. 3(b), we
find that the probability of the QB being in the dark state is
very low, and the oscillation over time is irregular, which is
bad for the storage of energy.

In realistic systems, due to the couplings to the environ-
ment, there would exist quantum decoherence. In Fig. 4, we
plot the envelope of the probability of which the atom is in
the dark state in order to explore the effects of the bound
states on the energy storage. At the very beginning, the enve-
lope changes somewhat chaotically, which is not shown here.
However, after some time it tends to decay exponentially. By
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FIG. 3. Probability of the dark state |E;) vs time ¢. (a) When
E; is in the energy band of the coupled cavities, the analytical
results obtained by Eq. (24) are denoted as the blue dots, while the
numerical results are denoted by the red solid line. In addition, the
green dashed line is calculated using the Lindblad-form quantum
master equation. The parameters are as follows: E, /& = 35.327 —
0.032i, wy = 100£ /3, 2, = 106£/3, Q, = 50¢, Q,, = 106£/3, k =
20£/3, Q, = 50&/3, Q. = 5&/3, and the number of cavities N =
253. (b) When E, is outside of the energy band of the coupled
cavities, the numerical results denoted by the green solid line are ob-
tained by E; /& = 66.6553 — 0.0287i, wy = 100£ /3, 2, = 200£ /3,
Q, = 100¢, @, =200&/3, k =20£/3, Q, =50&/3, Q. = 5&/3,
and N = 253.

numerical fitting as shown by the red dashed line, we obtain
an effective decay rate of k' = 2.6487 x 1072¢ « k = 20£/3
when there are two bound states. If we neglect the effect of
the cavity array, i.e., exclude the contribution from the bound
states, the decay rate of P, (t) is given by y. By numerical
fitting as shown by the blue solid line, we obtain the decay
rate y = 0.0645& ~ 2«’. It can be seen that, thanks to the
presence of the bound states, the decay rate is further reduced
as compared to the case when only the EIT is present. Also,
this implies that due to the EIT and the bound states, the dissi-
pation has been significantly inhibited and thus suppresses the
degradation of the QB.

Another important physical parameter to assess the QB is
the extractable energy, i.e., the ergotropy [25,26] in Eq. (25).

0
= ~
05 = :
~
~
~
~
-~ =~ o
£ ot =~ - ]
=1 =~ 4
-1.5¢ B
_2 1 1 1 1 1
0 5 10 15 20 25 30
&t

FIG. 4. The envelope of the probability of the dark state
with/without two bound states vs time. The red dashed line denotes
the case when there are two bound states. We use the function
In(Pg, ) = —0.35309 — 2.6487 x 1072&¢ to fit the data with the lin-
ear correlation coefficient || = 0.99314. The blue solid line shows
the case when there is no bound state with the corresponding lin-
ear correlation coefficient |r| = 1.0000. Initially, the atom is in the
state |m). The parameters are as follows: E; /& = 35.327 — 0.032i,
Q4 = 106£/3, Q, = 50, Q,, = 106§ /3, k = 20&/3, Q, = 50&/3,
and Q. = 5&/3.

Since the coupled-cavity array acts as a QB charger, we in-
vestigate the relationship between its ability to charge the
QB and the parameters. Here, we initially inject the photon
into the adjacent cavity of the Oth cavity and explore the
dynamics of the charging of the QB. The relationship between
the ergotropy WV and the frequency wy of the cavity and the
coupling strength £ between two cavities is shown in Fig. 5.
For the present set of parameters, we find that, no matter how

&/9%

20
wO/QC

FIG. 5. The maximum ergotropy Whax during the duration
[0, fmax = 15/K2.] vs the coupling strength & and the frequency wy
of the cavity. The other parameters are 2, = 21.2Q2., ., = 302,
Q,, =21.2Q, k =4Q,, Q, = 102, and N = 253.
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£/Q
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FIG. 6. The dependence of the maximum ergotropy Wi in
the period [0, t,,x = 15/€2.] on the coupling between two cavi-
ties & when wy = Re(E;). The other parameters are as follows:
wo =21.196Q,., Q; =21.29., Q, =302, 2, =21.22, k=
2Q,, 2, = 10Q,, and N = 253.

& changes, there is a maximum value of W when wy is equal
to the energy E; of the dark state. This implies that both
the useful work and the efficiency of the QB are the largest
when the cavity and the QB are in resonance.In Fig. 6, we
explore the relation between the maximum ergotropy Whax
of the QB and the coupling strength & under the resonance
condition with E; = (21.196 — 0.019i)2.. We find that for
small &, Wh,x increases along with the rise of &, because
the coupling between the cavities helps deliver the photon to
the cavity where the atom is located. However, after it reaches
the maximum around & = 1.22Q,, Wh.x experiences a de-
crease when further increasing the coupling strength. This
suggests that strong coupling between the cavities can prompt
the delivered photon away from the cavity with the atom
and thus suppresses the ergotropy. In summary, the cou-
pling between the two cavities can improve the efficiency of
the QB assisted by the resonance between the QB and the
cavity.

Finally, we discuss the effects of the charging time and the
coupling strength £ on the average charging power, which is
defined as P(¢) = W(¢)/t [43]. The average charging power is
critical for QBs as it helps determine the optimal time to turn
off the charging. When the average charging power is high,
it indicates that the QB is charging rapidly. On the contrary,
when the average charging power is low, it suggests that the
change in the QB’s ergotropy is slow. As shown in Fig. 7, we
can observe that, for a given coupling strength &, the charging
power increases quickly and then decreases, eventually stabi-
lizing at a relatively low steady state. By varying &, we find
that there is an optimal value of & for maximizing the average
charging power. A larger £ does not necessarily lead to better
performance in the average charging power, and this insight
can guide us in optimizing the QB in experiments.

In the above analysis of the effects of the photon frequency
wp and the coupling strength £ on the ergotropy and the

4
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FIG. 7. The average charging power P/Q? as a function of the
coupling strength & and time. The parameters are wy = 21.196%2,,
Qy =21.2Q., Q. =309, Q, =21.2Q., « =42, Q,=10Q,,
and N = 253.

average charging power of the QB, our purpose is to iden-
tify the optimal experimental parameters. The QB can be
optimized in advance according to the requirements of the
load, thereby fixing its parameters. During the charging or
discharging processes, these parameters remain unchanged.

IV. CONCLUSION

In this paper, we propose a scheme for charging QB by
coupling QB with cavity array. With the EIT, we obtain the
QB of an effective two-level system including the dark state
and the ground state. When the energy of the dark state is
within the energy band of the cavity array, there are two
bound states. We show that the energies of the bound states
determine the distribution dynamics of QB in the excited state,
resulting in Rabi-like oscillations. Under the influence of the
bound states and the dark state, we find that the dissipation
of the environment is strongly suppressed. When the energy
of the dark state is resonant with the bare frequency of the
cavity, the extractable work of the QB reaches its maximum.
In addition, we demonstrate that the coupling strength of the
two cavities maximizes the extractable work of the QB. Our
scheme extends the QB’s lifetime and avoids the reduction
in charging efficiency by suppressing environmental decoher-
ence, providing an avenue for efficient QB charging.
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APPENDIX A: DIAGONALIZATION
OF ATOMIC HAMILTONIAN

In this section, we obtain the eigenvalues and eigenstates
of atomic Hamiltonian by the perturbation theory.

After the Fourier transformation, the total Hamiltonian is
given by

H= Zwkakak+f2g1(ak|g (d] + axld) (g])

f > " ga(a]lg)(ml + arlm)(gl) + Ho.  (Al)

where
Hp = Qqld)(d| + Qele) e| + Qlm) (m]
+ Qe e)(d] + Qee™ " |} (m]| + H.c.,

with wp = wy — 2& cos(k) and Q4 = @, — ix /2. In the rotat-
ing frame defined by Ur = exp(—iw,t|e){e|), the Hamiltonian
(A2) is rewritten as

Hj, = U{HoUg — iU, Ug
= Qqld){d] + (Q2e — we)le)(e| + Quy|m) (m|
+ Qpe " r O ) (d] + Qe ) |e) (m] + H.c.

(A2)

(A3)
Assuming w, = w, = @, we obtain
Hp = Acle) (el + Qqld)(d]| 4 Q|m)(m|
+ Qple){d| + Qcle)(m| +H.c., (A4)

with A, = Q, — w,. Defining E = y 4+ Q, the eigenvalue £
of Hamiltonian (A4) is determined by
—y Q,
Q, w—Yy Q. | =0, (AS)
Qc wy —y
with w; = A, — Q4 and wy = Q,,, — 24, which is equivalent
to

¥ =y (1 + @) +y(w1wz - Qf - Qf,) = —le,wz. (A6)

If we assume w, is small, to the first order of w,, the solutions
can be written as y; = yo; + A;wz (j =1, 2, 3). By the per-
turbation theory, we can approximate Eq. (A6) to the zeroth
order as

¥ = V(@1 + o) + y(wiwr — Q- 912,) =0. (A7
Thus, we can obtain
Yor =0, (A8)
Yo2 = W+, (A9)
Yo3 = w—, (A10)

with Q2 = Qz + Qé and wtr = [(01 + ) £
\/(a)l — ) +4Q21/2. If w1, wy K 2, we can approximate

w4 as
(w1 — w2)?
4Q2

1
E{wl +a)2:|:2S2|:1 +

1
~ Slor + oy 29, (Al1)

Substituting the zeroth-order solutions yg; into Eq. (A6) yields

QZ
Ay =——", (A12)
wyw_
QZ
Ay =— B ) (A13)
oi(ow; —w-)
QZ
A; = P (Al14)

In conclusion, we could obtain the eigenvalues of Hamiltonian
H| as
92
E =— h +Q
LT T s x [(o + an)? — 422 T
QZ
@wz + Qq4,

[

(A15)

2

E = E[wl +w+2Q] - ———F—w

wi(wy —o-)

N 1 Q2

~ Qo+ (@ + gren ) + Q. (A16)
2
14

T
ooy —ow-)

1
E3 = 5[601 + wy —2Q] +

1 QZ
~—-Q+ = 3 w1+ —<wr | + Q4. (A17)

Q2

Correspondingly, the eigenstates are respectively

1
1) = - {LEi = Q0 — 01)(E — 2 — 02) - 21]1d)

i

+Q,(Ei — Q1 — wo)le) + QI,QC|m)}, (A18)
where the normalization constants are given by
N = |(Bi — Qu — o)(E; — Qu — ) — 22
HQE; — Qq — o) + 12,2 (A19)

To the zeroth order of w;’s, we can simplify the eigenstates as

|E)) = %(—Qﬂd) + Q,Q|m)), (A20)

|E,) = ]%(szim + Q,Qle) + ,QIm)),  (A21)

|E3) = i(sziw — Q,Qle) + Q,Q|m),  (A22)

with Ny = QQ., N, = /2Q%Q,, and N; = v/2QQ,. Here,

|E1) is the dark state, while |E>) and |E3) are the bright states.
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Furthermore, the bare atomic states can rewritten in terms of
the eigenstates as

ld) = 292 555 (MV21E2) + N3|E3) — 2N1|E1)),  (A23)
le) = 20,0 ) — N3|E3)), (A24)

1
lm) = 29,9 (V2|E) + N3|E3) + 2N |EY)). (A25)

APPENDIX B: EVOLUTION OF THE DARK STATE

In the rotating frame defined by Ugr = exp(—iw.t|e){e|),
the Hamiltonian of the hybrid system including the four-level
atoms and the cavity array can be transformed as

Zwkakak + f[Zgl(ak|g (d| + acld)(gl)

+ ) ga(aflg) (ml +ak|m><g|>} + Hj. (B1)

k
Assuming g1/g> = —./£2p, we can obtain |E|) = (g1]d) +
g2lm))/g, with g = Vg21 + g% In the bases |E;) (j =1, 2, 3),

Hamiltonian (B1) can be simplified as

Her = Zwkazak + E1E)(E|
k

+J) (a2} (Eil + axl Er) (g, (B2)
k

with J = g/ VN. Note that the bright states |E,) and |E3) are
decoupled from the cavity modes in Eq. (B2). In the single-
excitation subspace, the state of the total system reads

W) = u®|0.Er) + Y f()afl0.9).  (B3)
k

Here, |0, E,) is the cavities in the vacuum while the atom is
in the dark state. a}£|0, g) is the state where there is a photon
in the kth cavity mode while the atom is in the ground state.
Using the Schrodinger equation for Eqgs. (B2) and (B3), we
can obtain

it = Eyu+JYy_ B (B4)
k

iBr = oxBr + Ju, (B5)

where u(0) = 0 and B, (0) = 1/ VN are the initial conditions
of the system. Next, we apply a Laplace transformation to
Eqgs. (B4) and (B5) to obtain

ilpii(p) — u(0)] = Exii(p) +J »_ Be(p).  (B6)
k

ilpBr(p) — Br(0)] = wy Br(p) + Jit(p).

With a bit of algebra, we can calculate the probability ampli-
tude of |0, E1) in p space as follows:

1
] Zkzp o
VN p+iE + Y, -2

(B7)

i(p) = (B®)

P'Hwk

The probability amplitude of |0, E}) in the time domain can
be obtained from the inverse Laplace transform as

1 o+ico
ut) = — / dpii(p)e”
27i Jy

—ioco

= Zres[ﬁ(pj)epf’] - L[/ dpii(p)e”
7 2mi Cr

+/dp12(p)e’”+fdpﬁ(p)e”’:|. (B9)
l[ l2
Here, Cy is the large semicircle in infinity, p;’s and [;’s
(j =1, 2) are the two singularities and the two branch cuts,
respectively, which are defined from

P+1E1+Z

Following Eq. (B10), the branch cuts are defined by p +
iy =0, with p € [ipn, ipu], where p, = —wy —2& and
pu = —wo + 2&. Please note

B10
PR (B10)

Z L N[ 1
— p+ion T 2w P+ i[wy — 2£ cos(k)]

N [T 1
2w ), pilwy — E(e* + e )]
N 1 1
= dz . N
27 Jy=1 ptilwo—EG@+z7Y]iz
N 1
=— dz——— s
278 J=1 2+ % +1
N d (B11)
= S
27'[%_ lz]=1 Z2+MZ+ 1

where M = (ip — wy)/&, and z4 = [-M £+ /M? — 4]/2 are
the two singularities. Thus, if p ¢ [—i(wy + 2§), —i(wo —
2&)], we have M > 2 or M < —2. For the former case, since
ip>awy+2&,ie.,—1 <z <0andz_ < —1, we have

N 1
- dz———
278 Jom 24 Mz A1
N 1
- dgm—m—
27 Jy= (@—ze)z—2z0)
IN
R (B12)
£VME —4

In order to obtain the singularity, we substitute Eq. (B12) into
Eq. (B10), and thus we have

N
p+iE; +szﬁ = fi(p). (B13)

Letting f;(p) = 0, we can obtain the singularity p; withip; >
wp + 2&. Similarly, for the latter case, we can also obtain the
second singularity p, with ip, < wy — 2& by

p+iE —J?

= f2(p). (B14)

IN
ENM? —4
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In the above calculations, we can obtain the contribution from the singularity in Eq. (B8). Hereafter, we obtain the contribution
from the branch cuts in Eq. (B8). Because of the Jordan lemma, we can know f C dpii(p)e? = 0. So far as the contribution from

the branch cuts, that is, p € [ip,,, ipy], Wwe can obtain

i —JINNY ————eit
/ dpii(p)e” + / dpii(p)e” = / e —dp+
w  PHEI—) DrortioT

11 12

Here,

pHawpxi0t  2m ) . p4awpEi0t

pn —J/NN Y e
f Kpro=i0T7 ), (B15)
p.

J?
w P+ E— Zk pHar—io+

T 1 2m
/ dkP( ) F ,
[ o Pt a8 — (g + p)?

k
(B16)
where P(x) is the principal value of x, and ffﬂ dkP[1/(p + wi)] = 0. Substituting Eq. (B16) into Eq. (B15) yields
J 1 i J 1 i ___2ZN _ +E
/pM ~ N Zk P+wk+i0+ept dp + /pm W Zk P+wk—i0+ept dp = i /25 i o ! ei(x—wo)ldx
P+E1—Zk[#2+io+ o PHE = Y s VN J2 (1 — @y +X)2+4§Jzz_1\$)z
B17)
Thus, we can obtain
1 % ,
-5 ( / dpi(p)e” + / dpﬁ(ﬁ)é”’) = / C(x)e' ™~ dx, (B18)
27Tl I L —2¢
where
8 —
1 Jag2—(xp [x = wo) + E1] i(—wo)t
Cx)=—— > YR ot (B19)
T (El — o +x) + 4E2-(x)?
In summary, we can write the expression of the probability amplitude of |0, E;) as
2% A
u(t) = B1Q(p1)e’" + BrQ(p2)el™ + / C(x)e™“ "V dx, (B20)
—2&
where
0(p1) = — e, (B21)
M2 —4
8
(p2)= ——5 (B22)
o M —4
B 1 _ (ipj — w)* — 47
T, (py — 0P — 482+ (ip; — E))ip; — an)
(B23)
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