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Abstract: Combinatorial optimization problems (COPs) constitute a fundamental class of
computational challenges with extensive applications across scientific and industrial domains.
The emergence of the coherent Ising machine (CIM) as a computational paradigm has demonstrated
exceptional capabilities in rapidly generating arbitrary spin configurations and effectively solving
large-scale COPs. Despite its promising potential, the CIM framework encounters an inherent
limitation related to amplitude heterogeneity. Current approaches to this limitation primarily
rely on Gaussian approximations to model quantum noise in the system’s amplitude dynamics
within the original CIM framework. However, these methods generally fail to account for the
temporal and periodic non-Markovian characteristics of pulses in practical environments. In
this study, we introduce temporally correlated non-Markovian noise into the dynamics of both
conventional and spiking neural network-based CIM systems, investigating their performance
through comprehensive hyperparameter analysis. Our method incorporates a detailed examination
of hyperparameter selection and its influence on algorithmic efficiency. Through extensive
numerical simulations, we demonstrate that the integration of non-Markovian noise significantly
accelerates variance evolution in both canonical coordinates and amplitude dynamics over time.
The proposed approach not only exhibits enhanced computational performance but also shows
superior scalability for large-scale problem instances. These findings suggest that our approach
offers distinct advantages in addressing complex COPs, potentially opening new avenues for
efficient optimization in various applications.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Combinatorial Optimization Problems (COPs) focus on identifying optimal combinations or
configurations from a given set of possibilities and are prevalent in numerous domains, including
logistics and transportation, network design, manufacturing, and financial investment [1,2]. These
problems can be broadly characterized as the minimization or maximization of an objective
function subject to specific constraints. However, COPs are typically classified as NP-hard,
meaning that the computational time required to solve them grows exponentially with the size of
the parameter space. This inherent complexity poses significant challenges for finding efficient
solutions, particularly as the scales of the problems increase.

This inherent complexity presents substantial challenges in the resolution of large-scale
instances of these problems. Over the years, researchers have developed a variety of heuris-
tic algorithms, including simulated annealing, ant colony optimization, and particle swarm
optimization [3–5]. These methods efficiently explore solution spaces by emulating natural
processes. However, the lack of precise models often results in prohibitively long computation

#562816 https://doi.org/10.1364/OE.562816
Journal © 2025 Received 19 Mar 2025; revised 17 Apr 2025; accepted 27 Apr 2025; published 19 May 2025

https://orcid.org/0000-0003-2688-8602
https://orcid.org/0000-0002-0116-7844
https://orcid.org/0000-0002-0466-3165
mailto:lubo@mail.bnu.edu.cn
mailto:wangchuan@bnu.edu.cn
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.562816&amp;domain=pdf&amp;date_stamp=2025-05-19


Research Article Vol. 33, No. 11 / 2 Jun 2025 / Optics Express 22209

times. Recently, physicists have introduced innovative computing paradigms to tackle COPs, such
as Quantum Annealers, Ising Machines, Josephson parametric oscillators, and Semiconductor
Annealers [6–10], which leverage phase transitions in the Ising model. These novel approaches
have shown remarkable improvements in both computational efficiency and solution accuracy
compared to traditional algorithms, offering promising avenues to address complex optimization
challenges.

The Coherent Ising Machine (CIM), rooted in the Ising model, has emerged as a highly
effective computational framework to solve COPs [9,11,12]. This system enables arbitrary spin
coupling and can solve large-scale COPs efficiently in short timeframes. The principle of CIMs
is based on dynamic bifurcation, where spin amplitudes are mapped to discrete binary outcomes,
simulating computational bits through the relation σi = sign(xi) [13,14]. Typically, CIMs are
implemented using degenerate optical parametric oscillators (DOPOs), with bifurcation achieved
via phase-sensitive amplification (PSA). This process is intrinsically linked to quantum noise
fluctuations [15,16]. However, conventional CIM models often assume that the noise follows
a Gaussian distribution with Markovian properties, neglecting temporal correlations [17,18].
This assumption is problematic, as real physical environments frequently exhibit non-Markovian
characteristics [19]. Currently, the predominant programmable CIMs use an optical ring feedback
structure as their computing and storage core [20,21]. The measure-feedback system (MFB)
implements arbitrary coupling Ising model behaviors by returning a portion of the signal output
back to the input, offering more flexibility compared to fixed delay optical paths and on-chip
optical Ising machines [21,22]. However, time-delayed optical pulses exhibit periodic temporal
effects on feedback, which demonstrate non-Markovian characteristics. Recent studies on open
quantum optical systems, including optical systems [23,24] and quantum simulations [25,26],
have demonstrated that incorporating non-Markovian noise can lead to a variety of intriguing
and practical applications. These findings highlight the potential of leveraging non-Markovian
dynamics to enhance the performance and versatility of CIM-based systems.

Furthermore, the evolution of individual spins in CIMs can lead to divergent stable points
due to the non-uniform coupling matrix, resulting in amplitude heterogeneity, a discrepancy
between the ground state spin outcomes of the CIMs, and the ideal Ising model. To address this
issue, several approaches have been proposed, including nonlinear filtering [27], error correction
signals [28–30], discrete simulated bifurcation machines [31,32], and CIMs based on spiking
neural networks (SNN-CIM) [33,34]. While these methods incorporate Gaussian approximations
to model the quantum noise in the system’s amplitude dynamics, they often treat the noise as
purely Markovian. This simplification overlooks the inherent non-Markovian properties, such
as time delay and periodicity, characteristic of real-world environments with optical pulses.
Consequently, there remains a need to better account for these temporal correlations to further
enhance the accuracy and efficiency of CIM-based solutions.

To address the limitation that random Gaussian noise fails to capture the time-correlated
noise inherent in feedback systems, this paper introduces periodic non-Markovian noise into the
evolution processes of both CIM and SNN-CIM. This approach aims to more accurately simulate
the influence of environmental noise on computational models in open quantum systems, thereby
better representing the evolution of Ising machines in real-world environments. By employing a
Gaussian approximation to neglect higher-order fluctuation products and incorporating a tunable
noise term influenced by multiple discrete moments, we derive the master equation for the
evolution of the degenerate optical parametric oscillators (DOPOs). We further analyze the
selection of key parameters in the model, as the choice of parameters depends on the type and
scale of the problem graph and can significantly affect computational performance. Additionally,
we compare the evolution of the DOPO process with and without the non-Markovian noise and
evaluate the computational performance of the CIM and the SNN-CIM with noise across problems
of varying scales. We believe that this work may further explore the relationship between Ising
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machine bifurcations and quantum noise and improve the computational performance of Ising
machines in COP.

2. Dynamics of the system

2.1. Basic model

Currently, programmable CIMs with measure-feedback systems (MFB-CIMs) are widely em-
ployed to solve the COPs, as the optimal solution often corresponds to the spin configuration
of the system in its ground state. For an N-spin system, each spin can take one of two states,
σi = ±1, and the Ising Hamiltonian is defined by

H = −
1
2

∑︂
i,j

Jijσiσj. (1)

Here, Jij represents the matrix coupling coefficient of the optical pulses. The value of Jij can
be any real number for different problems. In an MFB-CIM optical fiber ring, the amplitude
results Xi are obtained through measurements of the output coupler, and the symbolic set of Xi
represents the solution to the COP. The field programmable gate array (FPGA) computes the
amplitude and phase of the injected term Iinj =

∑︁
JijXj. The photonic modulator then receives

the injected pulse Iinj and couples it to the target pulse through the input coupler. After a period
of evolution, the system is in the lowest energy state, and the corresponding problem is solved.

Fig. 1. (a)Schematic diagram of the SNN-CIM. The blue loop represents the X-type pulses,
which are the DOPO pulses, while the green loop represents the error-correcting dissipative
b-pulse. They are combined through an antisymmetric coupling. The yellow bar graph
shows the noises in different delays. (b) and (c) show respectively the evolution of 25 spins
over time for the CIM and SNN-CIM in solving the Max-Cut problem for a fully connected
graph with 25 nodes, with the left showing all spins and the right focusing on the evolution
of two spins towards the lowest energy state.

However, the amplitude heterogeneity in MFB-CIM can significantly degrade its computational
performance. A fixed pump strength is unable to simultaneously optimize the states of all spins.
When spin amplitudes are mapped to discrete binary outcomes using σj = sign(xj), errors can
arise, leading to a mismatch between the ground state spin configuration of the MFB-CIM
and that of the Ising model. This discrepancy can result in similar performance issues. The
SNN-CIM, as illustrated in Fig. 1(a), provides an effective solution to the problem of amplitude
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heterogeneity. Similarly to the MFB-CIM, it employs a nonlinear function, tanh(Iinj), to filter out
non-uniform coupling terms, thereby alleviating the amplitude heterogeneity issue. Furthermore,
the SNN-CIM introduces a dissipative b-pulse as an error correction signal, which destabilizes
fixed points and enables the system to escape local minima during the computation process. This
mechanism enhances the system’s ability to converge toward more optimal solutions.

In Fig. 1(a), the blue loop represents the nonlinear optical fiber loop incorporating the PSA,
where X-pulses correspond to the DOPO pulses. The green loop represents the dissipative
b-pulse, which serves as an error correction mechanism. It is coupled in an oppositely symmetric
manner with the X-pulse to form a spiking neuron. Coupling is achieved through input and
output couplers with reflectivity R (where R = j∆t, R signifies the reflectivity of the out-coupling
beam splitter, j is the injection coupling strength, and ∆t denotes the temporal duration for a
complete traversal of the ring cavity). Both the measurement and injection processes introduce
vacuum quantum noise W and environmental noise ξ. By maintaining a fixed pump intensity and
increasing the coupling term amplification factor C during computation, the ground-state energy
can be minimized, allowing the system to search for solutions based on the principle of minimum
gain.

The FPGA dynamically adjusts the antisymmetric coupling coefficient b based on the
relationship between the real-time energy Et and the lowest energy Eo before time t, thereby
influencing the stability of the system’s fixed points and enabling closed-loop control of the
search process. The yellow bar graph illustrates that the non-Markovian environmental noise
diminishes as the number of periods increases, indicating that earlier moments have a reduced
influence on the current state. The intensity of the environmental noise injected into the system
can be controlled by adjusting the parameter α. Figure 1(b) and (c) depict the computational
processes of CIM and SNN-CIM, respectively, when solving the Max-Cut problem for a fully
connected graph with 25 nodes. Notably, there is a significant difference in their search processes.
In terms of the evolution of spin amplitudes and potential functions over time, SNN-CIM exhibits
faster convergence and achieves the minimum potential energy multiple times, demonstrating its
superior efficiency and robustness compared to traditional CIM.

Before introducing the quantum theoretical model of SNN-CIM, we begin with the master
equation of the CIM [15]:

∂ρ̂

∂t
=

∑︂
r

(︃
∂ρ̂

∂t

)︃
DOPO

+

(︃
∂ρ̂

∂t

)︃
output

+

(︃
∂ρ̂

∂t

)︃
input

(2)

The three terms on the right side of the equation represent the evolution process of the DOPOs,
the impact of the output, and the input coupler, respectively. The master equation of the r-th
DOPO is defined by:(︃

∂ρ̂

∂t

)︃
r
= ([âr, ρ̂â†r ] + H.c.) +

p
2
[â†2

r − â2
r , ρ̂] +

g2

2
([â2

r , ρ̂â†2
r ] + H.c.) (3)

g is photon absorption coefficient and âr is annihilation operator of the r-th signal mode. Terms
on the right side sequentially represent the linear dissipation of signal photons and the nonlinear
interaction between signal and pump photons. The DOPO pulse in-phase amplitude at each
round trip is X̂r =

âr+â†r
2 and ∆X̂r = X̂r − ⟨X̂r⟩. These nonlinear interactions allow the CIM to

produce binarized outcomes at suitable pump intensities, rendering it highly effective for solving
specific classes of COPs.
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Table 1 are the converting operators to an equivalent c-number form by using the Glauber-
Sudarshan representation for ρ[35]: After the transformation, Eq. 3 could be expressed as:

∂P
∂t
=
∂

∂αr
(αrP) − p

∂

∂αr
(α†r P) + g2 ∂

∂αr
(α†r α

2
r P) +

1
2
∂2

∂α2
r
(p − g2α2

r )

+
∂

∂α†r
(α†r P) − p

∂

∂α†r
(αrP) + g2 ∂

∂α†r
(α†2

r αrP) +
1
2
∂2

∂α†2
r
(p − g2α†2

r )

(4)

So the equivalent positive-Pc-number stochastic differential equations (c-SDEs) is:

dαr

dt
= −αr + pα†r − g2α†r α

2
r +

√︂
p − g2α2

r ξ1,r (5)

dα†r
dt
= −α†r + pαr − g2α†2

r αr +

√︂
p − g2α†2

r ξ2,r (6)

Table 1. Glauber-Sudarshan
representation

aρ ↔ αP(α)

a†ρ ↔

(︂
α∗ − ∂

∂α

)︂
P(α)

ρa ↔

(︂
α − ∂

∂α∗

)︂
P(α)

ρa† ↔ α∗P(α)

a†aρ →

(︂
α∗ − ∂

∂α

)︂
αP

ρa†a →

(︂
α − ∂

∂α∗

)︂
α∗P

Building on this foundation, the SNN-CIM incorporates spiking neurons, illustrated by the
green pulses in Fig. 1(a). Each spiking neuron is formed through an antisymmetric coupling
between an X-pulse and a b-pulse, where the neuron’s state is determined by the amplitude of the

X-pulse. The coupling matrix governing this interaction is given by
⎡⎢⎢⎢⎢⎣

0 1

−1 0

⎤⎥⎥⎥⎥⎦ . Following the

measurement of the output coupler results by the FPGA, the pulses are modulated in amplitude
using an optical modulator and subsequently injected back into the ring cavity. Here, ξa,r
represents random numbers satisfying specific statistical properties.

⟨ξa,r(t)ξb,r′(t′)⟩ = δabδrr′

{︄
δ(t − t′) + α

K∑︂
k=1

e−jk∆t
[︂√︁

1 − j∆tδ(t − t′ − k∆t)eikϕ

+
√︁

j∆tδ(t − t′ + k∆t)e−ikϕ
]︂ }︄ (7)

The second and third terms in curly braces represents the effects caused by non-Markovian
dynamics [36] which is related to α , K and j . They represent the intensity of the non-Markovian
effect ,time range of its impact and injection coupling strength, respectively. Each output of the
subsystem drives another subsystem, with propagation delays ∆t occurring in both directions.
Conversely, each subsystem is influenced by delays ∆t and −∆t. The exponential term (e−jk∆t)
is introduced as a decay factor to account for the diminishing influence of earlier states on
the current result as k∆t increases. After applying the Gaussian approximation, the dynamic
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evolution process of the SNN-CIM can be described as follows:

dµr

dt
= −(1 − p + j)µr − g2(µ2

r + 2nr + mr)µr

+
√︁

j(mr + nr)Wr − jγbb

+ tanh{Cj
∑︂
r′

J̃rr′

(︄
µr′ +

√︄
1
4j

Wr′

)︄
}

(8)

dnr

dt
= −2(1 + j)nr + 2pmr − 2g2µ2

r (2nr + mr) − Fj(mr + nr)
2 (9)

dmr

dt
= −2(1 + j)mr + 2pnr − 2g2µ2

r (2mr + nr)

+ F
[︁
p − g2(µ2

r + mr) − j(mr + nr)
2]︁ (10)

dbr

dt
= −γbb + j

(︄
µr +

Wr√︁
4j

)︄
(11)

F = 1 + α
K∑︂

k=1
e−jk∆t

(︂√︁
1 − j∆teiϕ +

√︁
j∆te−iϕ

)︂
(12)

Here, b represents the dissipative pulse amplitude, F represents the form after transformation
of Eq. 7, and W denotes the vacuum noise caused by homodyne measurement and feedback
injection. We can separate αr into the mean field and small fluctuation as αr = ⟨αr⟩ + ∆αr and
α†r = ⟨α†r ⟩ + ∆α

†
r by using the Gaussian approximation. The mean value of the amplitude is

µr = ⟨αr⟩ = ⟨α†r ⟩, with fluctuations are mr = ⟨∆α2
r ⟩ = ⟨∆α†2

r ⟩ and nr = ⟨∆αr∆α
†
r ⟩. The variance

in canonical coordinate is ⟨∆X̂2
r ⟩ = mr + nr +

1
2 and the variance in canonical momentum could

be described as ⟨∆P̂2
r ⟩ = −mr + nr +

1
2 .

Therefore, the dynamic equation of SNN-CIM incorporating non-Markovian noise can be
derived. In subsequent numerical simulations, these differential equations will be solved using
the Euler method. In the CIM framework, once the spin amplitudes evolve to minimize the system
energy, the resulting spin configuration is fully determined. However, in SNN-CIM, the system
is reset to an unstable state by adjusting the parameter γb of the b-type pulses, which is shown
in Fig. 2. This structure allows it to search between low-energy states and effectively escape
from the constraints of local minima. During the initial condition t<400, the system searches for
the ground state in Fig. 2(a). The energy of the spin configuration, described by E = − 1

2Jσiσj,
gradually decreases. This reduction occurs while the pump strength remains constant and the
coupling term amplification factor C is increased, as depicted in Fig. 2(d), indicating that the
system is in an effective search stage. The energy of the system suddenly increases because the
algorithm decreases the antisymmetric coupling coefficient γb when the system evolves to a local
minimum or an excited state, placing the parameters in the instability region of the fixed point
and allowing the system to continue its search effectively [34]. When t>400, the energy value
obtained during the effective search phase reaches its minimum. Here we set the threshold time
to 100 iterations. The algorithm then resets the coupling term amplification factor C to its initial
value every 100 iterations, initiating a new cycle of search. This iterative process ensures that the
system continues to explore and converge toward optimal solutions.

2.2. Optimal parameters for the system

In the SNN-CIM model, parameters j and p represent the output coupling rate and the linear
gain coefficient, both of which significantly influence computational performance. To determine
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Fig. 2. The evolution of X-pulses and b-pulses over computation time is shown in (a) and
(b). (c) and (d) illustrate how adjusting the dissipation and coupling term amplification
factor in the SNN-CIM model affects the stability of its nonlinear dynamical system, thereby
preventing the system from being trapped in local minima.

the optimal parameters, we show the effect of different combinations of parameters on the
computational performance of the model in Fig. 3. Time-to-solution (TTS) is selected to evaluate
the performance, which is calculated using T log (1 − 0.99)/log (1 − PS)(TTS = T when PS = 1).
Here, T is the time taken for each trial computation, PS is the probability of obtaining the Max-Cut
value, and TTS represents the computation time required to find the optimal value with a 99%
probability. Our objective is to determine the values of j and p that minimize TTS, thereby
optimizing the model’s computational efficiency.

For CIM with d = 0.3, the parameters that achieve smaller TTSs are generally distributed
around the linear range p = j + 1 in Fig. 3(a). When p<1, the total gain of the system is lower
than the inherent dissipation, preventing stable bifurcation and making it impossible to obtain the
ground state spin configuration. For the fully connected graphs that exhibit high symmetry and
numerous degenerate ground states (as shown in the second row), achieving stable bifurcation
requires only p>j + 1. Similarly, in the SNN-CIM framework, the graph with d = 0.3 has stricter
requirements for the values of j and p compared to the fully connected graph. For sparse graphs,
the value of p needs to satisfy 1 + j<p<2.5 + j, whereas for d = 1.0, p>1 + j is sufficient to
achieve good computational results. Therefore, in the numerical simulations that follow, we
choose p = 2 + j to ensure the computation is more efficient.

The photon absorption coefficient g also plays a critical role in determining the computation
success rate of both CIM and SNN-CIM. This parameter quantifies the loss of two photons as
the pulse passes through the PSA in the DOPO. As g2 increases, the number of excited pump
photons decreases, causing a shift in the nonlinear fixed points within the evolution equations.
This shift ultimately impacts the computational accuracy of the models. The amplitude evolution
equation for a noiseless single DOPO is given by µ̇ = (p − j − 1) µ − g2µ3, derived from Eq. 8.
Figure 4 demonstrates that as g2 increases, the degree of bifurcation initially rises and then
declines, reaching a peak within the range 10−2<g2<10−1. Therefore, for subsequent numerical
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Fig. 3. The impact of j and p on the computational performance of CIM (a) and SNN-
CIM(b) varies with different graph scales and sparsity conditions. For both models, the
first and second rows display computational results for sparse and fully connected graphs,
respectively. The first, second, and third columns represent graphs with scales of 16, 32, and
50, respectively, in increasing order. The color of the block in each small picture represents
the TTS value of the system at the value of j and p on the horizontal and vertical coordinates
at this time. The darker the color, the larger the TTS value. α = 0.05 was used to illustrate
the impact of non-Markovian noise on system performance and ensure accurate model
computations.

simulations, g2 values will be selected from this optimal range to ensure the best computational
performance.
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Fig. 4. The success rate of SNN-CIM on sparse graphs of varying scales with d = 0.5 and
different values of g2. The intensity of the line color indicates the value of N, with darker
colors corresponding to larger N values. The difference in N values represented by adjacent
colors is 4.

3. Results

When the CIM simulates the evolution of the Ising model, differences in pump thresholds and
coupling matrices can prevent bifurcation phenomena, often leading to amplitude exponential
explosion–an abnormal state during the simulation. To ensure the model’s correct operation,
we first investigated its dynamic processes. In Fig. 5, we observe that the introduction of
non-Markovian noise accelerates the evolution of variance in both canonical coordinates and
amplitudes for both CIM and SNN-CIM.Furthermore, even with this noise, SNN-CIM maintains a
faster computation speed compared to CIM, highlighting the enhanced computational performance
resulting from the incorporation of b-pulses. This improvement arises because non-Markovian
noise amplifies second-order correlated noise by influencing pulses at different times. Since the
optimal solution for the anti-ferromagnetic coupling matrix is σ1 = 1 and σ2 = −1, the amplitude
evolution results for all four models in Fig. 5(b) consistently exhibit one amplitude increasing
while the other decreases.

The antiferromagnetic coupling matrix is overly simplistic as a problem matrix. In Fig. 6,
we evaluate a more complex problem to compare the computational speed differences between
CIM and SNN-CIM. For both models, the computation time significantly influences the success
rate of the computation, where success is defined by achieving the Max-Cut value. When the
computation time is insufficient, the majority of cases remain unresolved. As the computation
time increases, the number of unresolved cases decreases until the computation time is sufficiently
long to ensure all cases achieve an optimal value. Here, we primarily focus on the model’s
computation speed. A faster decline in the curve indicates that SNN-CIM reaches the optimal
solution more frequently with the same number of iterations or that SNN-CIM achieves similar
results to CIM in a shorter amount of time. This advantage arises from introducing the dissipative
b-pulse in SNN-CIM, which makes the system more likely to enter unstable states. This allows
the system to more rapidly explore different spin configurations, avoiding the problem of getting
stuck in local optima that is common in CIM, and also speeds up computation. The observed
phenomenon is further corroborated by Fig. 1(b) and (c). Besides, the models incorporating
non-Markovian noise show faster computational speed, as the addition of noise accelerated the
bifurcation of spin amplitude.
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Fig. 5. The evolution of variance in canonical coordinate and amplitude over time for CIM
and SNN-CIM after introducing non-Markovian noise. The four models here all compute
the simplest antiferromagnetic coupling matrix.

Fig. 6. The relationship between unresolved compute cases and compute time. 1000
compute cases were computed on a coupled matrix element of 0 or 1 with sparsity d = 1.0
and N = 500.

Next, in Fig. 7, we compare the TTS and the fitted curves of CIM and SNN-CIM with
non-Markovian noise for different graph scales, with the results being fit to an exponential model
of the form p · q

√
x. Table 2 presents the numerical results of the fits. It can be concluded that

for both types of problem graphs, the base value q for SNN-CIM is significantly lower than that
for CIM. This indicates that as the problem graph size

√
N increases, the TTS growth rate for

SNN-CIM is slower, implying that SNN-CIM computes faster and is more suitable for large-scale
problems. However, the pump p for SNN-CIM is relatively large. The result is that SNN has more
parameters and more complex search mechanism, which makes it less beneficial for tackling
simpler problems. It can be seen that the CIM only computes to N = 35, because the optimal
value computed by SNN-CIM is used as the test criterion to define whether the computation
is successful, and the CIM cannot compute the optimal value at a scale greater than 35, and
the success rate is 0, which makes the TTS value meaningless. The data points with small N
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Fig. 7. The variation in TTS for CIM and SNN-CIM across different graph sizes is analyzed,
with the results being fit to an exponential model of the form p · q

√
x. The blue and pink

points represent the simulation results of TTS of CIM and SNN-CIM under different N. The
blue and pink curves represent the fitting results of CIM and SNN-CIM. (a)The coupling
matrix elements are either 0 or 1 with d = 0.5. (b)The elements are 21 equally spaced
decimal values between -1 and 1.

Fig. 8. The statistical distribution of cut-rate from 500 computations for graphs of different
sizes is analyzed. For adjacent, similarly colored violin plots, the lighter color on the left
represents SNN-CIM statistics, while the right represents CIM. The gray grid indicates
the mean value of the cut-rate. (a) represents a series of graphs where the elements of
the coupling matrix used in the computations are either 0 or 1, with a sparsity of d = 0.5.
(b) represents a series of graphs where the elements of the coupling matrix used in the
computations are decimal values uniformly distributed between [−1, 1], with 21 discrete
values.

values have obvious deviations from the fitting curves because the problem size is too small,
the computation time is relatively sufficient, and the computation accuracy is high, resulting
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in a small TTS value. As N increases, the complexity of the problem increases rapidly, the
computation success rate decreases, and the TTS value increases rapidly.

Table 2. TTS fitting results for CIM and
SNN-CIM

{0, 1} d = 0.5 [-1,1]

CIM SNN-CIM CIM SNN-CIM

p 29.56 363.60 16.80 236.30

q 3.21 1.84 3.87 1.94

More importantly, in addition to its advantage in computing speed, SNN-CIM also outperforms
CIM in accuracy. Figure 8 shows a statistical analysis of 500 computational results for the cut-rate
(defined as the ratio of the cut to the Max-Cut) across various graph sizes, comparing SNN-CIM
(left) with CIM (right). We use cut-rate here because cut values increase with problem size,
which causes the shape of individual violin plots to shrink, making the distribution of solutions
less discernible. The range of cut-rate is between [0, 1]. Logically, each violin plot should also
be within this range. The wider the shape, the more distribution there is in this cut-rate value.
However, since the kernel density estimation of the violin function will smooth the data and
extend to a certain extent outside the data range, the violin plot in Fig. 8 has a value greater than
1, but this does not affect our observation of the distribution of the computation results. In these
plots, the area of each rectangular colored block represents the number of occurrences of the
cut-rate within that vertical coordinate range. Firstly, for each problem size N, the mean cut
rate of SNN-CIM is higher than that of CIM. Secondly, in terms of the distribution of the violin
plot, the color blocks with higher cut-rate values of SNN-CIM are larger, while the color blocks
with lower cut-rate values are smaller. This shows that the computation results of SNN-CIM for
different scales are higher than those of CIM. Compared with CIM, the solutions of SNN-CIM
are often distributed in the part closer to the optimal value. This advantage is because the b-pulse
added to SNN-CIM can correct the amplitude heterogeneity problem existing in CIM and avoid
the nonlinear function causing the system to fall into the local minimum. The specific search
process is described in detail in the model section.

4. Conclusion

To simulate the dynamic of the CIM operating in a real environment, we introduced adjustable
non-Markovian environmental noise based on the CIM and SNN-CIM and analyzed its impact
on parameter selection and computational performance. For the parameters such as j, p, and
g, we obtained the computation results in all cases by traversing and selecting the parameter
values used in subsequent numerical simulations by TTS. This parameter selection method
can also be extended to other algorithms based on CIM, even if such behavior will cause a
certain consumption of classical computing resources. Because of these parameters significantly
influence whether CIM can be in a normal computational state according to Eq. 8 and blind
attempts will cause more resource waste. We found that in Fig. 3, for the same graph density
of the same problem, the law of its j and p value is stable, which can improve the efficiency of
parameter estimation to a certain extent.

In numerical simulations, the inclusion of non-Markovian noise accelerated the evolution of
variance in both canonical coordinates and amplitudes for both CIM and SNN-CIM. However,
SNN-CIM consistently demonstrated faster computation speeds, particularly for large-scale
graphs. In contrast, the CIM exhibited limitations, such as failing to achieve optimal solutions
within the same computation time and displaying a large exponential base in the fitted TTS curve.
Though the TTS of CIM is lower than that of SNN-CIM for small-scale problems due to the
structure of SNN-CIM is more complex. But this does not affect the computational advantage of
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it as we usually expect to solve large-scale problems in fact. Finally, after statistical analysis of
the cut-rate, the computation results of SNN-CIM are higher in terms of both the mean and the
distribution of the results.

CIMs based on optical parametric oscillation have already demonstrated remarkable capabilities,
such as solving Max-Cut problems with 100,000 spins at high speeds [22] while offering
advantages in energy efficiency, speed, and solution quality [37]. The development of CIMs
has pioneered new avenues for addressing COPs and has found applications in diverse fields,
including wireless communications, chemical synthesis, and financial analysis. Moreover, the
integration of CIMs with artificial intelligence holds significant promise, potentially accelerating
deep neural network training [38–41] and driving future advances in artificial intelligence. This
synergy between CIMs and AI is expected to play a pivotal role in the continued growth and
innovation of intelligent systems.
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