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ABSTRACT: Two-dimensional coherent spectroscopy (2DCS) offers significant advantages in
terms of high temporal and frequency resolutions and a signal-to-noise ratio. Until now, the
response-function (RF) formalism has been the prevalent theoretical description. In this study, we
compare the non-Hermitian Hamiltonian (NHH) method with the RF formalism in a three-level
system with a constant control field. We obtain the signals from both approaches and compare
their population dynamics and 2DCS. We propose quasi-Green functions for the NHH method,
which allows all dominant Liouville paths to be inferred. We further simulated the 2DCS of
Rh(CO)2C5H7O2 (RDC) dissolved in hexane with the NHH method, which is in good agreement with the previous experiments.
Although the NHH method overestimates relaxations, it provides all important paths by analytical solutions, which are different from
the four paths used in the RF formalism. Our results demonstrate that the NHH method is more suitable than the RF formalism for
investigating the systems, including relaxation and control fields via the 2DCS.

■ INTRODUCTION
Two-dimensional coherent spectroscopy (2DCS) is a
technique that applies sequential pulses to materials or
biological systems and receives output signals rich in structural
and dynamic information.1−5 In 1998, Jonas et al. first
experimentally demonstrated two-dimensional electronic spec-
troscopy.6 Subsequently, Asplund et al. demonstrated two-
dimensional infrared spectroscopy.7 This technology has
rapidly advanced in both experimental methods and theoretical
approaches since it was first proposed. Nowadays, this
technique is implemented with a wide range of pulse
wavelengths, from UV to microwave,6,8−15 providing temporal
resolutions ranging from milliseconds to attoseconds.9,16−19 It
is widely employed in physical chemistry, condensed-matter
physics, and biophysics for exploring phenomena such as
energy transfer,20−24 molecular vibrations,25,26 electronic
transitions and relaxations,27−29 chemical reactions,30,31 as
well as structures like proteins.32−34 The means to implement
2DCS experimentally are diverse.3,35−39 The common
principle is to apply pulse sequences with different time
intervals to samples in which the pulses are temporally well
separated. The emitted polarization signals are projected onto
two independent frequency axes, creating a map known as
2DCS.

On the other hand, one of the widely used methods for the
theoretical description of the 2DCS is the response-function
(RF) formalism.40−43 This approach employs double-sided
Feynman diagrams, each corresponding to a Liouville path, to
describe the polarization. The signals are viewed as responses
to the perturbations induced by the three applied pulses.
However, the number of diagrams to be drawn and calculated
may reach as many as hundreds if the system involves more

external fields and energy levels. In such cases, the RF
formalism may lead to the omission of some important
diagrams. For example, an additional field is applied to induce
transitions in the system. It may become exhausting to draw all
possible paths to obtain the analytical solution although most
of them do not contribute significantly. On the other hand, the
non-Hermitian Hamiltonian (NHH) method, which is widely
used in investigating PT symmetry,44−46 photosynthetic light
harvesting,47−49 chemical reaction and avian compass,50−52

and negative refraction in Möbius molecules,53 may overcome
these disadvantages. By omitting the quantum-jump terms, it
obtains a reliable solution to the quantum master equation and
thus achieves a balance between computational difficulty and
analytical-solution-based description.54 Nevertheless, working
with non-Hermitian operators still requires careful consid-
eration in interpreting the physical processes underlying the
results. Despite the RF formalism and the NHH method, other
approaches with different advantages for simulating 2DCS
include the hierarchical equations of motion approach,55 the
nonperturbative response function formalism,56 the numerical
integration of the Schrödinger equation scheme,57,58 the
nonlinear exciton equations method,2 the nonlinear exciton
propagation method,59 and the full cumulant expansion
formalism.60
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In this article, we compare the NHH method and the RF
formalism in a three-level system with a constantly applied
control field. It is a typical driven system, characterized by
additional electromagnetic fields beyond the pulse sequence
used in 2DCS. Such systems have been applied in Rb atoms
and Cs2 molecules to induce electromagnetically induced
transparency61,62 and in 1,2-propanediol for enantiodetec-
tion.63 The introduction of these fields facilitates the
generation of novel phenomena, allowing for a combination
with other techniques or the execution of more refined
operations. The RF formalism is used as a reference because it
is a widely used method that can provide analytical solutions
with a clear physical picture. Although Lemmer et al. first
applied the NHH method to 2DCS,54 they did not focus on
the approach itself but rather on its application to study ion
Coulomb crystals. In contrast, our work concentrates on the
similarities and differences between these two methods in
calculating 2DCS. We validate their consistency by comparing
the 2DCS results when they follow identical Liouville paths.
We discuss their respective advantages and disadvantages as
well as their scopes of application. Particularly, we propose the
quasi-Green function for interpreting the 2DCS by the NHH
method, which significantly simplifies the analytical challenges.
Then, we use the NHH method to simulate the 2DCS of
Rh(CO)2C5H7O2 (RDC) dissolved in hexane to further
validate this approach. Overall, we believe that the NHH
method provides a reliable description for 2DCS, particularly
in driven or complex systems, and can overcome the
limitations of the RF formalism in these scenarios.

We first illustrate the RF formalism and the NHH method in
which the quasi-Green function is proposed as a counterpart to
the Green function in the RF formalism. We then present their
double-sided Feynman diagrams and the analytical expressions
of the rephasing (RP) signal. We next provide a comparison of
the Green and quasi-Green functions, the population
dynamics, the conservation of the population, and the 2DCS
by the two approaches, focusing mainly on their differences in
coherent and incoherent behavior. The advantages and
disadvantages as well as the difference and consistency of the
two methods are discussed. We further apply the NHH
method to RDC dissolved in hexane and discuss the results in
relation to its energy levels and the existing experimental
results. Finally, we summarize our results and offer a
perspective on the application of the NHH method.

■ THEORETICAL APPROACHES
Response-Function Formalism. We consider a three-

level system including a ground state |b⟩, an excited state |e⟩,
and a metastable state |c⟩, as shown in Figure 1a. A control
field with a Rabi frequency Ωec is constantly applied to the
system. When a probe field is introduced, the electromagneti-
cally induced transparency (EIT) effect is formed to suppress
the dissipation due to quantum interference.64 For 2DCS,
three incident pulses of the probe field induce the |b⟩ ↔ |e⟩
transition with Rabi frequency Ωbe, and the signals to be
measured are emitted from the system in a specific direction, as
shown in Figure 1b. Between the energy levels b and e, there
exist bidirectional relaxations with a downhill rate Γ1 and an
uphill rate Γ2. Basically, the Hamiltonian of the system without
probe and control fields is

H j j
j

j0 = | |
(1)

(j = b, e, c) where we assume ℏ = 1 for simplicity.
Considering the external fields, Hf(t) = H0 + Hint

c (t) is the
total Hamiltonian including only the control field, and Hp(t) =
H0 + Hint

c (t) + Hint
p (t) is the total Hamiltonian including both

the control field and the probe pulses. The interaction
Hamiltonian Hint

c (t) is written as

H t t e c( ) ( ) h.c.c
cint = | | + (2)

where Ωc(t) = − Ωec exp(−iνct)/2, with Ωec and νc being the
Rabi frequency and the frequency of the control field,
respectively. On the other hand, the probe pulses are strong
enough, as compared to the control field and the relaxations, to
have the approximation Hp(t) ≃ H0 + Hint

p (t) (p = a, b, c).
Meanwhile, the probe pulses are short enough to be
considered as perturbations to the system. The Hamiltonian
contributed by the probe pulses will be provided later in the
NHH method when it is used.

The 2DCS are plotted using the third-order RF after double
Fourier transformation. This function equals the third-order
polarization P(3)(t) = ⟨μρ(3)(t)⟩ in the semi-impulsive limit.
Before considering the control field in tc, the RF is expressed
as37,40,65−67

S t t t i t t t

t t t

( , , ) ( ) ( )

( ), ( ), (0), (0)

I

I I I I

(3)
3 2 1

3
3 2 1

2 1 1

= × + +

[ + [ [ ]]]
(3)

where t1, t2, and t3 are the time intervals between two adjacent
pulses, as shown in Figure 1c. ρI(0) represents the initial
equilibrium state of the system under Hamiltonian H0 in the
interaction picture. Meanwhile, μI(t) = eiH0tμe−iH0t is the
electric-dipole operator in the interaction picture, where μ =
μbe|b⟩⟨e| + μeb|e⟩⟨b| is the electric-dipole operator in the
Schrödinger picture. By expanding the commutators, the third-
order polarization is divided into eight terms with37,40,65,67

Figure 1. (a) Schematic diagram of the three-level system. The energy
levels b, e, and c are the ground, excited, and metastable states,
respectively. The probe pulses denoted by the light-green line are
applied to induce the |b⟩ ↔ |e⟩ transition with Rabi frequency Ωbe,
and the control field denoted as the dark-green line is resonantly
coupled to the |e⟩ ↔ |c⟩ transition with Rabi frequency Ωec. (b) Three
probe pulses and the signal with their different directions. (c)
Sequence of probe pulses (solid line), the control field (dotted line),
and the signal (dashed line), in which tc (c = 1, 2, 3) is the time
interval between two adjacent pulses.
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4 3 2 1 2 1 1

= + + +

= + + +

= + + +

= + + + (4)

and their hermitian conjugates. The incidence of three probe
pulses from different directions allows for the selective
observation of certain combinations of the eight terms
mentioned above. For example, the RP signal is emitted in
the direction ks⃗ = − ka⃗ + kb⃗ + kc⃗ as37,40,65

S t R t R t( , , ) Re ( , , ) ( , , )RP
(3)

3 2 1 2 3 2 1 3 3 2 1[ + ]
(5)

There are other methods to solve the signal starting from the
RF, such as the generating function,66,67 and here, we present
the approach using the Green function. Rn (n = 1, 2, 3, 4) and
their hermitian conjugates can be obtained by solving the
quantum master equation. This equation describes the
quantum dynamics of the open system and is written as68

i H A A

A

, ( ) ( )

( )
be eb

j
j jj

1 2
(0)

= [ ]

(6)

where H is the total Hamiltonian, Aij = |i⟩⟨j| is the quantum-
jump operator describing the process of jumping from |j⟩ to |i⟩,
γj

(0) is the pure-dephasing noise for each state, and
A A A A A( ) ,ij ij ij ij ij

1
2

= { }† †, with {Aij
†Aij, ρ} = Aij

†Aijρ +
ρAij

†Aij being the anticommutator. Assuming that the control
field is in resonance with the |e⟩ ↔ |c⟩ transition, the time-
dependent term e−iνct in eq 2 is eliminated after the
transformation to the rotating frame, that is, the interaction
picture. Thus, the time evolution of the elements of the density
matrix in the interaction picture is as follows:

i
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(7)

where the dissipation of the energy level c is neglected, and the
dephasing rates read

1
2

( )eb e b1 2
(0) (0)= + + +

(8)

1
2

( )ec e c1
(0) (0)= + ++

(9)

1
2

( )bc b c2
(0) (0)= + +

(10)

When the nondiagonal elements ρij (i ≠ j) of the density
matrix are treated perturbatively, and the Green functions are
used to describe the time evolution of the density matrix
elements, the RP signal is written in a more specific form62

S t t

t

t

t

( , , ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ebeb eeee bebe

ebeb bbee bebe

ebeb eebb bebe

ebeb bbbb bebe

RP
(3)

3 2 1 3 2 1

3 2 1

3 2 1

3 2 1

=

+

+

+ (11)

where the Green function t t( ) ( )I
ijkl ij= for the initial

condition ρmn
I (0) = δmkδnl. The double-sided Feynman

diagrams for each term in eq 11 are shown in Figure 2, with

(a), (b), (c), and (d) corresponding to four terms in turn. The
evolutions during t2 with the initial and final states are
explicitly demonstrated in the diagrams. The first and the last
terms of eq 11, respectively, correspond to R2 and R3 in eq 4.
The other two terms, however, do not correspond to Rn
because they are induced by population transfer during t2. The
evolution of the nondiagonal elements in t1 and t3 is described
by the Green functions as

i

i i

i

i i

( )
4( )

4( )( )
,

( )
4( )

4( )( )

bebe
bc eb

bc eb eb eb ec

ebeb
bc eb

bc eb eb eb ec

1
1

1 1
2

3
3

3 3
2

=

=
+

+ +
(12)

while the evolution in t2 is obtained by assuming two possible
initial states after the first two pulses. In the situation where the
system is at |e⟩ at the beginning of the population time, and the
nondiagonal elements of the density matrix are treated as
perturbative, the Green functions for the system to remain at |
e⟩ or to evolve to |b⟩ are, respectively, written as

Figure 2. Feynman diagrams of the three-level system by the RF
formalism. (a−d) demonstrate the four Liouville paths of the RP
signal, that is, the four terms in eq 11. The evolution of t2 is
highlighted.
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where

A ( )( )ec ec1 1 2 1 2
2= + + ++

(15)

A ec2 1 2= + +
(16)

1
4

( )ec ec
2 2=+

+
(17)

Similarly, in the other situation where the system is still at |b⟩
after excitation, the Green functions are written as

t
e

( )eebb

t

2
2 2

( )

1 2

1 2 2

=
+

+

(18)

t
e

( )bbbb

t

2
1 2

( )

1 2

1 2 2

= +
+

+

(19)

Eventually, by taking the real part of the double Fourier
transformed RF, the RP signal and thus the 2DCS are
obtained.
Non-Hermitian Hamiltonian Method. We apply the

NHH method to the same system in Figure 1a. Starting
directly from the master eq 6, we drop the quantum-jump
terms and approximately obtain

i H H( )NH NH= † (20)

where the NHH reads69

i

k
jjjjjjj

y

{
zzzzzzzH H i A A A A A A

2 be be eb eb
j

j jj jjNH 1 2
(0)= + +† † †

(21)

The NHH method is valid if two conditions are met. The first
is that the dissipation and dephasing rates Γj and γj

(0) should be
much smaller than the typical frequency of the Hamiltonian,
while the other will be discussed later.

By the NHH method, the final state of the system in the
interaction picture is written as56,63

t t t U t t t t t

t t t t t t

U t t t t t t t
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1
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× + + + + +

+ + × + +

+ + +

× + + +

+ × | (22)

where δtp (p = a, b, c) is the time interval of the probe pulse
and Up

I (Uf
I) represents the evolution operator with (without)

the probe pulses included in the interaction picture. As in the
RF formalism, we consider that the probe pulses are strong
enough relative to the control field, and their durations are
short enough that both dissipation and dephasing during the
excitations are neglected. As a result, the Hamiltonians during
the probe pulses are explicitly written in the interaction picture
as

H e b e
1
2

h. cp
I

be
ik rp= | | +·

(23)

Taking dissipation and dephasing into account, the Hamil-
tonians during the free evolutions read

i

k
jjjjjjj

y

{
zzzzzzz

H e c c e i e e

b b j j

1
2

( )
2f

I
ec

j
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2
(0)

= | | + | | |

| + | | + | |
(24)

The Rabi frequency Ωij is given by − d⃗ij · E⃗, where E⃗ is the
electric field of the laser and d⃗ij is the transition dipole moment
between state i and j. Thus, the selectivity through laser
polarization is accounted for and directly reflected in Ωij.

Hereinto, we approximate the probe pulses as square pulses.
Under Hf

I, the time evolutions Uf
I(tc + t0, t0) = eiH0(tc + t0)Uf

S(tc +
t0, t0) e−iH0t0 = eiH0tcUf dI

(tc), where t0 represents the starting time
of the free evolution and Uf

S is the time evolution operator in
the Schrödinger picture. Then, Uf dI

(tc) for initial states |b⟩, |e⟩,
and |c⟩ are, respectively, written as

U t b C t b( ) ( )f c bb cI
| = | (25)
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In the subscript of Cji(t), i and j represent the initial and final
states during the evolution and

b b2
(0)= + (33)

ec e c1
(0) (0)= + (34)

1
4

( )ec ec
2 2=

(35)

Meanwhile, considering δtp ≃ 0, the time evolutions Up
I(δtp +

t0, t0) = UpdI
(δtp) with t0 denoting the starting time of the probe

pulses. The Up dI
(δtp) under HI

p for three initial states are then,
respectively, written as

÷÷÷÷÷÷
U t b N b e e( ) ( )p p p p

ik r
I

p| = | + | (36)
÷÷÷÷÷÷

U t e N e b e( ) ( )p p p p
ik r

I

p| = | + | (37)

U t c c( )p pI
| = | (38)

where βp = iΩbeδtp/2, and the normalization constants are

N (1 )p p
2 1/2= + | |

Straightforwardly, the final density matrix reads ρI(t) = |ψI

(t3, t2, t1)⟩⟨ψI (t3, t2, t1)|, and the total polarization is P(t) =
⟨μI(t)ρI(t)⟩. Under the situation that the spacing of the energy
levels is much wider than their line widths, its nondiagonal
elements ρeb

I and ρbe
I emit signals near ωe in the frequency

domain, which are proportional to the polarization

P t t t t t t t t t t t

t

( , , ) ( , , ) (

) c. c

eb eb
I

be
I

a b

c

3 2 1 3 2 1 1 2 3= + + + +

+ + (39)

Here, μbe
I (t) is the component corresponding to the transition

from |e⟩ to |b⟩ of the electric-dipole operator μI(t). On account
of the phase-matching condition, the polarization P⃗RP(t3, t2, t1)
in the RP direction along ks⃗ = − ka⃗ + kb⃗ + kc⃗ is selected.
Furthermore, by double Fourier transforms with respect to t1
and t3, the RP signal of the 2DCS reads

P t P t t t( , , ) ( , , )RP 3 2 1 RP 3 2 1= [ ] (40)

and is explicitly written as

P t N N N

N N G G t G

N N G G t G

N G G t G

N G G t G

G G t G

( , , )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

a b c a

b c b c bebe bbbb ebeb

b c b c bebe eeee ebeb

b b c bebe ceee ebcb

c b c bcbe eeec ebeb

b c bcbe ceec ebcb

RP 3 2 1
2

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

= *

× [ *

+ *

+ *

+ *

+ * ]
(41)

Here, exp(−iωetc) are absorbed into Gijkl(t) and G̃ijkl(ω). The
quasi-Green functions and their Fourier transform Gijkl(t) and
G̃ijkl(ω) are proposed for the NHH method and are written as

G t C t C t e( ) ( ) ( )ijkl jl ik
i te= * (42)

G G t( ) ( )ijkl ijkl= [ ] (43)

where kl represents the initial density matrix element |k⟩⟨l|
before an evolution and ij represents the final density matrix
element |i⟩⟨j| after the evolution. Since Cji (Cji*) are
components of the ket (bra), we rearrange the subscripts of
Cjl*Cik as Gijkl analogous to those of the Green functions. After
the Fourier transform, the quasi-Green functions read

G
i

i
( )

2 2 ( )

2 ( )
bebe

ec b ec e

b ec e
2 2

=
+ [ + + ]

+ [ + + ]

+

+
(44)

G
i

i
( )

2

2 ( )
bcbe

ec

b ec e
2 2

=
+ [ + + ]+

(45)

G
i

i
( )

2 2 ( )

2 ( )
ebeb

ec b ec e

b ec e
2 2

=
+ [ + ]

+ [ + ]

+

+
(46)

G
i

i
( )

2

2 ( )
ebcb

ec

b ec e
2 2

=
+ [ + ]+

(47)

The Feynman diagrams of each term in eq 41 are shown in
Figure 3, with (a)−(e) corresponding to the five terms in turn.
The initial and final states of evolutions during t1, t2, and t3 are
explicitly given. Compared with Figure 2, two of the five
Liouville paths are the same, that is, Figure 3a vs Figure 2d and
Figure 3b vs Figure 2a. Meanwhile, the other two Liouville
paths disappear, that is, Figure 2b,c, and three new Liouville

Figure 3. Feynman diagrams of the three-level system by the NHH method. (a−e) demonstrate the five Liouville paths of the RP signal, that is,, the
five terms in eq 41. The evolution during t2 is highlighted by green, and the evolutions during t1 and t3 are marked by yellow.
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paths emerge, that is, Figure 3c−e. More specifically, Figure 3c
remains the same as Figure 2a until the initial state of the t2
evolution and diverges at the final state of it. In addition,
Figure 3d,e are different from Figure 2 in the final state of the
t1 evolution. We note that it is these distinctions that lead to
the difference between the two methods.

Finally, a summary of the approximations used in the RF
formalism and the NHH method is presented in Table 1,

highlighting both the similarities and differences in their
treatment. First of all, since the quantum-jump terms are
neglected, the detailed balance can not be reproduced in the
NHH method. Additionally, to simplify the calculations, a
square-pulse approximation is adopted. However, more
realistic pulse shapes can be considered if Hint

p (t) is
appropriately revised. More importantly, in the RF formalism,
we treat the off-diagonal terms of the density matrix
perturbatively to obtain the analytic solution. More accurate
results may be achieved if this approximation is discarded.

■ RESULTS AND DISCUSSION
In this section, we compare the 2DCS of the two methods by
the example of 1,2-propanediol gas at room temperature.
Three states under investigation are selected with |b⟩ = |vg⟩|
00,0,0⟩, |e⟩ = |ve⟩|11,1,1⟩, and |c⟩ = |ve⟩|10,1,0⟩. |vg⟩ (|ve⟩) marks the
vibrational ground (first-excited) state, and |JK da,K dc,M⟩ marks the
rotational states. The transition frequencies of each state are,
respectively, ωb = 0, ωe/2π = 4.33 THz, and ωc/2π = 4.32
THz.63,70−72 The Rabi frequencies and durations of the probe
pulses are Ωbe/2π = 50 MHz and δtp = 0.5 ns, with a
bandwidth of 2π × 1.8 GHz < ωec, while the Rabi frequency of
the control field is Ωec/2π = 2 MHz.63 The dissipation rates are
Γ1/2π = 1 kHz and Γ2/2π = 0.03 kHz, and the pure-dephasing
rates of all states are homogeneously γb

(0)/2π = γe
(0)/2π = γc

(0)/
2π = 0.1 MHz.73,74

The comparison between the Green function ( )ijkl and
the quasi-Green functions G̃ijkl(ω) is shown in Figure 4. The
additional factors ± i before G̃ijkl(ω) are included due to the
different definitions of the Fourier transforms in the RF and
the NHH approaches.40 The curves of Im( bebe) and
Im(iG̃bebe) are identical and so are Im( ebeb) and Im(−iG̃ebeb).
Concurrently, the curve of Im(iG̃bcbe) coincides with Im( bebe)
and Im(iG̃bebe) when ω − ωe < 0 and differs from them by a
sign when ω − ωe > 0. The same behavior can be observed in
the curves of Im(−iG̃ebcb) vs Im( ebeb) and Im(−iG̃ebeb). The
imaginary parts of the Green functions for ω1 dominate the
absorption of probe pulses, with higher positive values
representing greater absorption and lower negative values
representing more emission. The opposite signs of the
imaginary parts of the Green functions for ω3 have the same

influence. The control field causes the original absorption peak
at ωe to be split into two peaks with approximately symmetrical
locations around ωe, just as EIT happens. Furthermore, the
emergent evolution paths of G̃bcbe and G̃ebcb introduce emission
peaks. Consequently, splitting determines the location of peaks
on 2DCS, and the influence of the emission peaks will be
discussed later.

The population dynamics vs the population time t2 by the
RF formalism and the NHH method are compared in Figure 5,
with only possible Liouville paths demonstrated. Figure 5a
illustrates the population dynamics by the RF formalism in the
subspaces spanned by |b⟩ and |e⟩. Figure 5b depicts the
dynamics of the diagonal elements |b⟩⟨b| and |e⟩⟨e| of the
density matrix obtained by the NHH method. Figure 5c shows
the quasi-Green functions for the three Liouville paths by the
NHH method in addition to the RF formalism. Notice that
although the initial (final) state of Gceee (Geeec) is the population

Table 1. Summary of Approximations Used in the Two
Methods

method

approximation RF formalism NHH method

different perturbative Hint
p square-pulse approximation

semi-impulsive limit non-Hermitian H
perturbative ρij

same Hp ≃ H0 + Hint
p

νc = ωec

Figure 4. Comparison of the Green functions by the RF ( ijkl) and

the NHH (G̃ijkl) approaches. (a) bebe vs iG̃bebe and iG̃bcbe are,
respectively, denoted by the orange solid, dark-green circles, and light-
green dashed lines; (b) ebeb vs − iG̃ebeb, and − iG̃ebcb are, respectively,
denoted by the purple solid, dark-blue circles, and light-blue dashed
lines.
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state, its final (initial) state is a coherent state. This sharp
contrast yields purely imaginary quasi-Green functions.

The dynamic processes of bbbb and Gbbbb exhibit a damping
with different time scales for reaching the steady states, that is,
(Γ1 + Γ2)−1 vs (γb/2)−1. For eeee, Geeee, and Gceec, there are
coherent oscillations due to the coherent population transfer.
The oscillation frequency of eeee is Ω̃+ when Ωec > γec

+ /2.
Meanwhile, the oscillation frequencies of Geeee and Gceec are
identical, that is, Ω̃− when Ωec > γec

−/2. These three curves all
oscillate at the same frequency since Ω̃+ ≈ Ω̃− ≈ Ωec when Ωec
≫ γec

±. On the other hand, oscillations undergo damping with a
time scale of 1/γec

+ and ultimately disappear due to dephasing
and dissipation.

There is a phase shift of π between the oscillations of Geeee
and Gceec. When Geeee = 0, Gceec reaches its maximum value,
indicating that the maximum population transfer corresponds
to the maximum coherence. In addition, the imaginary parts of
Gceee and Geeec exhibit antisynchronized damping oscillations.
They oscillate around zero with a phase shift of π between
them as well. However, they have no direct effect on the final
2DCS. Moreover, although the oscillation behaviors by the two
methods exhibit similarity, they tend to reach different steady
states in long-time limit, for example, Γ1/(Γ1 + Γ2) for bbbb vs
zero for Gbbbb, according to eqs 19 and 28. This remarkable
discrepancy is due to the fact that the Hamiltonian in the
NHH method is not Hermitian, that is, H† ≠ H, so the
conservation of the trace is violated, and thus, the detailed
balance breaks down.

To illustrate this more clearly, we present a comparison of
the trace dynamics during t2 for the two methods in Figure 6,
where the orange circles and dashed lines always remain at
unity, while the dark-blue circles and dashed lines decay
exponentially. The circles (dashed lines) represent the
summation of all populations evolving initially from energy
level b (e). The result indicates that the trace is conserved for
the RF formalism no matter how long the system evolves. In
contrast, the trace is not conserved for the NHH method,
whatever the system in t2 is initially prepared.

For further comparison of the two approaches, representa-
tive points are selected according to their population dynamics,
that is, t2 = 0, 0.24, 0.5, 103 μs, and the 2DCS for each method
at these population times are plotted in Figure 7a−h. The first
three t2 values correspond to the initial state, the first valley,
and the first peak of the population dynamics, respectively, for

both the RF formalism and the NHH method. The last t2 is
selected for observing results at a steady state. In both
methods, the introduction of the control field results in the
splitting of the homogeneously broadened peak into four
smaller peaks on 2DCS.62 The RF formalism and the NHH
method, exhibiting identical peak positions, indicate that the
spacings between the peaks are identical. These spacings
between the adjacent diagonal and nondiagonal peaks equal to
2.005 × 2π MHz, which are approximately the splitting width 2
× 2π MHz of the Green functions according to Figure 4.

The RP signals of the two methods are, respectively,
normalized by their maximum values at t2 = 0 μs, thereby
obtaining relative signals for the sake of simplicity. At t2 = 0 μs,
both methods yield the four highest peaks, and the relative
heights for one peak and its counterpart from the other
method are approximately identical, with a variance at the scale
of 10−4. At t2 = 103 μs, the peaks of the RF formalism retain
their scale because the trace is conserved. The peaks of the
NHH method, however, undergo overall attenuation as t2
increases since its trace is not conserved. The peak heights
rapidly attenuate in the first few microseconds. Even so, Figure

Figure 5. Population dynamics by (a) the RF formalism, (b) the NHH method, and (c) the quasi-Green function Gijkl(t) for the coherences vs
time. The dark-green solid and dark-blue dashed-dotted lines denote bbbb (Gbbbb) and eeee (Geeee), respectively. The light-blue dotted and dark-
red dashed lines, respectively, denote bbee and eebb, while the light-green solid, orange dashed, and purple dotted lines, respectively, denote
Im(Gceee), Im(Geeec), and Gceec. Here, Gceee and Geeec are purely imaginary. The inset in (a) shows the long-time regime, and the black circles in the
first two subfigures label t2 = 0.24 μs and t2 = 0.50 μs, respectively.

Figure 6. Conservation of trace for different initial states by the RF
and NHH approaches. The orange circles and dashed lines denote the
traces of the RF formalism starting from the initial states |b⟩ and |e⟩,
and the dark-blue circles and dashed lines denote the traces of the
NHH method starting from the initial states |b⟩ and |e⟩, respectively.
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7h, with an extremely small colorbar (which is not shown
here), is similar to Figure 7d. This indicates that although the
NHH method continues to lose its scale, it still preserves the
relative information between peaks. Here, we have the second
condition that should be satisfied when using the NHH
method. This method is suitable for short-time dynamics and
fails to observe the steady state in the long-time limit.

The four peaks of the RF formalism synchronously become
lower at t2 = 0.24 μs and then raise at t2 = 0.5 μs. They exhibit
synchronous oscillating behavior, which is dominated by eeee.
The NHH method, on the other hand, has little variance on
the diagonal peaks despite attenuation, while the off-diagonal
peaks continue to oscillate. For better clarity, the heights of the
diagonal peak at (−1.005, −1.005) MHz and the nondiagonal

Figure 7. Comparison of 2DCS for the two methods. The first (second) row corresponds to the RF formalism (the NHH method). The third row
is by the RF formalism with Liouville paths the same as the NHH method in Figure 3. The 2DCS are plotted when (a, e, i) t2 = 0 μs, (b, f, j) t2 =
0.24 μs, (c, g, k) t2 = 0.50 μs, and (d, h, l) t2 = 103 μs.

Figure 8. Heights of diagonal and nondiagonal peaks are shown by (a) the RF formalism, (b) the NHH method, and (c) the RF formalism with the
Liouville paths from the NHH method as a function of t2. The light-blue dashed and purple dotted lines represent the diagonal and nondiagonal
peak heights, respectively.
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peak at (−1.005, 0.995) MHz are plotted as functions of t2, as
shown in Figure 8a,b.

According to the Liouville paths of each term in t1 and t3, the
RP signal of the NHH method is divided into three parts. The
paths of Figure 3a,b are added together as the part that
experiences |b⟩⟨e| evolving to |b⟩⟨e| during t1, while |e⟩⟨b|
evolving to |e⟩⟨b| during t3. Figure 3c,d are added together and
have little effect on the final 2DCS. Figure 3e is classified into a
separate part because it experiences time evolution from |b⟩⟨e|
to |b⟩⟨c| in t1 and |c⟩⟨b| to |e⟩⟨b| in t3. The 2DCS of the first
and the third parts is demonstrated in Figure 9. In Figure 9c,
the nondiagonal peaks are negative, which are caused by the
emission peaks of the quasi-Green function in Figure 4. The
remaining positive peaks at t2 = 0.24 μs are shallow but are
summed up to be the same scale in accordance with the peak
heights at t2 = 0 μs. At t2 = 0.50 μs, on the other hand, Figure
9d gives little contribution, and the final 2DCS is dominated
by Figure 9b. As a result, Figure 9b is almost the same as that
in Figure 7g. These 2DCS are consistent with the population
dynamics. In other words, having less population on the
excited state |e⟩ despite decay is the feature of stronger
coherence between the energy levels e and c, as well as more
contribution from the Liouville path, Figure 3e.

Next, for a better comparison of the two approaches, we
recalculate the 2DCS by the RF formalism with Liouville paths
the same as the NHH method in Figure 3. The RP signal is
written as

S t t

t

t
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( , , ) ( ) ( ) ( )
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Correspondingly, the additional Green functions are written as
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+
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In this case, the 2DCS is shown in Figure 7i−l. Meanwhile, the
variance of heights of the diagonal and nondiagonal peaks is
plotted in Figure 8c. It is shown that when the RF formalism
and the NHH method are applied using the same Liouville
paths, the resulting 2DCS exhibits quite similar behaviors. The
only discrepancy of the 2DCS occurs significantly in the long-

Figure 9. Comparison of the NHH method’s partial 2DCS with different evolving paths in t1 and t3. The first (second) row corresponds to the
summation of the paths evolving from |b⟩⟨e| to |b⟩⟨e|(|b⟩⟨e| to |b⟩⟨c|) in t1, while evolving from |e⟩⟨b| to |e⟩⟨b|(|c⟩⟨b| to |e⟩⟨b|) in t3. The 2DCS are
plotted when (a, c) t2 = 0.24 μs and (b, d) t2 = 0.50 μs.
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time limit, where the peak heights by the NHH method
markedly decrease compared to the counterparts by the RF
formalism. These results reveal that the two methods are
mostly consistent when having identical Liouville paths.

Considering that the Liouville paths of the RF formalism in
Figure 2 do not include terms like |b⟩⟨c| or |e⟩⟨c|, which are
induced by the control field, we believe that the original RF
formalism fails to accurately describe the time evolutions of the
system and identify all relevant Liouville paths. Conversely, the
NHH method, enhanced by our simple improvement with the
quasi-Green function, effectively provides the appropriate
Liouville paths.

Finally, we simulated the 2DCS of RDC dissolved in hexane
using the NHH method. The system has already been
experimentally measured by Khalil et al.75 This system has
six states, which include a ground vibrational state |00⟩, two
one-quantum states, that is, |a⟩, |s⟩, and three two-quantum
states, that is, |2a⟩, |2s⟩, and |as⟩. The spectral bandwidth of the
three incident pulses is wide enough to excite all of the
vibrational transitions. The energy levels and transitions are
shown in Figure 10a, with dashed arrows representing
forbidden transitions and solid arrows representing allowed
transitions. The corresponding frequencies are as follows:75,76

ωa,0 = 2015 cm−1, ωs,0 = 2084 cm−1, ω2a,a = 2001 cm−1, ω2s,s =
2073 cm−1, ωas,a = 2058 cm−1, ωas,s = 1989 cm−1, ω2a,s = 1932
cm−1, and ω2s,a = 2142 cm−1, with the total decoherence rate γ
= 0.3 cm−1. The elements of the electric-dipole operator,
describing the intensity of each transition, are given by μa,0 =
1.05 μs,0, μas,s = μa,0, μas,a = μs,0, μaa,a = 1.48 μs,0, μss,s = 1.41 μs,0,
μss,a = μaa,s = 0.13 μs,0.77 Meanwhile, t1 and t3 vary from 0 to 5
ps, with a time step of 5 fs, and t2 is set to 0. The pulse
durations are neglected as they contribute to the final results
by an overall parameter.

The purely absorptive spectrum is obtained by calculating
the rephasing and nonrephasing signals. Zero padding is
applied to expand the data length to 5000 points per
dimension before the Fourier transform. After performing
the double Fourier transforms, the real parts of the rephasing
and nonrephasing signals are taken. The rephasing signal is
then reflected against the y-axis and summed with the

nonrephasing signal. As a result, the 2DCS data for absorptive
signals are shown in Figure 10b.

Our simulation qualitatively reproduces the experimental
features demonstrated by Khalil et al., including the number,
positions, and signs of the peaks in 2DCS.75 The system can
only be excited to one-quantum state by the first pulse. As a
result, the peaks appear along the ω1 axis only when ω1 = ωa,0,
ωs,0. Along the ω3 axis, on the other hand, there are six possible
frequencies at which peaks appear. When ω3 = ωa,0, ωs,0,
formed by the excitation of the third pulse, the peaks have
positive signs. When ω3 = ω2a,a, ω2s,s, ωas,a, ωas,s, the peaks have
negative signs, indicating radiation from the two-quantum
states. The gaps between the positive peaks and the negative
peaks are thus equal to the frequency differences between the
radiations and fundamental transitions. These gaps, marked by
double-headed arrows on the plot, are approximately Δas = 26
cm−1, Δa = 14 cm−1, and Δs = 11 cm−1, which are equal to the
frequency differences.75 Considering the well-fitted results, we
believe the NHH method is a reliable theoretical approach for
simulating the 2DCS.

■ CONCLUSIONS
In this paper, we compare the NHH method and the RF
formalism with their advantages and disadvantages in obtaining
2DCS. In particular, we propose a simple way to simplify the
computation processes of the NHH method by introducing the
quasi-Green function, which improves its interpretive capacity.
Both methods are demonstrated by gaining the RP signal of
2DCS for the same three-level system under the influence of a
control field. The NHH signal is decomposed into the sum of
the products, of which three quasi-Green functions corre-
sponding to different tc (c = 1, 2, 3) are multiplied. An intuitive
explanation of the NHH method is thus given directly in terms
of the Feynman diagrams. It is worth noting that the NHH
method yields a signal with more Liouville paths and evolution
information. We compare the population dynamics of the two
methods in t2, obtaining similar oscillatory behavior in the first
few periods but different steady states for the long-time
evolution. The comparison of the sum of populations on the
three levels in t2 indicates that for the RF formalism, the

Figure 10. (a) Schematic diagram of the six levels in RDC, which includes the ground vibrational state |00⟩, one-quantum states |a⟩ and |s⟩, as well
as two-quantum states |2a⟩, |2s⟩, and |as⟩. The transition frequencies are, respectively, ωa,0 = 2015 cm−1, ωs,0 = 2084 cm−1, ω2a,a = 2001 cm−1, ω2s,s =
2073 cm−1, ωas,a = 2058 cm−1, ωas,s = 1989 cm−1, ω2a,s = 1932 cm−1, and ω2s,a = 2142 cm−1.75,76 (b) 2DCS of RDC dissolved in hexane by the NHH
method. The horizontal and vertical lines mark frequencies ωa,0 and ωs,0. The gap values are approximately Δas = 26 cm−1, Δa = 14 cm−1, and Δs =
11 cm−1.75,76
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probability is conserved, while for the NHH method, the
probability keeps decaying. This decay leads to the different
steady states in the population dynamics and also to a
weakening of the emitted signal as t2 increases. On this issue,
the equation-of-motion method is capable of handling these
scenarios despite its higher computational complexity,78 that is,
O(N2) vs O(N), with N being the number of states. This
method is powerful since it does not require the use of
Feynman diagrams. Moreover, it can be combined with
thermofield dynamics to account for more realistic temperature
effects.79−81

We plot the 2DCS for four representative t2’s. Both methods
yielded splitting peaks with the same locations for each split
peak. For the RF formalism, the heights of the four peaks
oscillate synchronously. In contrast, the four peaks of the
NHH method oscillate for a few periods with continuous
attenuation, and the oscillation amplitudes of the nondiagonal
peaks vary more significantly than those of the diagonal peaks.
We show that the disappearance and emergence of off-diagonal
peaks in 2DCS by the NHH approach are attributed to the
different Feynman diagrams induced by the control field.
Furthermore, by comparing the 2DCS of the two methods
with the same NHH Liouville paths, we show that the main
difference between the two approaches is due to the
introduction of some additional Feynman diagrams and the
disappearance of some less important Feynman diagrams
induced by the control fields. The RF formalism in its original
form is simply inapplicable to driven systems with time-
dependent Hamiltonians, though it can be applied if we switch
to the rotating frame with a time-independent Hamiltonian. In
addition to the simplified model system, we simulate the 2DCS
of the RDC dissolved in hexane. The positions and signs of all
peaks are faithfully reproduced by the NHH approach and are
in good agreement with the experimental plot. Therefore, by
comparing the 2DCS from experiments with those predicted
by the NHH approach, we can effectively extract useful
information about the structure and dynamics of the molecule
under investigation.

Compared to the Hamiltonian in the RF formalism, the
NHH includes the relaxation but drops the quantum-jump
terms. Meanwhile, the RF formalism takes relaxation into
account by solving the quantum master equation without
dropping these terms. This approximation in the NHH
method leads to a nonconserved trace in population dynamics
and manifests as an overall decay in the intensity of the 2DCS.
However, the overall decay does not significantly influence
other phenomena, such as the oscillations in the off-diagonal
peaks. Despite the overall decay, other differences arise from
the method adopted, with the most significant being the
disappearance and reappearance of the off-diagonal peaks.

Overall, the main differences between the 2DCS of the two
methods arise from the fact that in the NHH method, the
relaxations are equivalent to unidirectional population losses to
the environment. Additionally, there are more significant
Liouville paths contributing to the final 2DCS. The NHH
method has its advantage of obtaining the signals directly from
the analytical solution of time evolution and thus would not
omit any dominant Liouville paths. However, since we assume
constant decay rates, the NHH method is not suited for line
shape analysis and thus can not account for homogeneous
broadening. As for the RF formalism, its results are reliable as
long as it considers all of the important Liouville paths. To sum
up, the NHH method can be more applicable in systems with

abundant energy structure and transition paths, as compared to
the RF formalism. It will help to obtain 2DCS with all
dominant Liouville paths considered and has prospects for
exploring the dynamics of molecular or atomic systems with
control fields.
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