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Suppressing Degradation in Quantum Batteries by
Electromagnetically-Induced Transparency

Jin-Tian Zhang, Cheng-Ge Liu, and Qing Ai*

Quantum batteries (QBs), as emerging quantum devices for energy storage
and transfer, have attracted significant attention due to their potential to
surpass classical batteries in charging efficiency and energy density. However,
interactions between a QB and its environment result in decoherence, which
significantly reduces its operational lifespan. In this work, the aging of QBs is
proposed to be suppressed by introducing the electromagnetically-induced
transparency (EIT). Specifically, a four-level atom is modeled as a QB with an
effective two-level system enabled by the EIT, while the photons in the cavity
serve as the energy charger. By comparing the energy and extractable work of
the QB with and without the EIT effect, it is demonstrated that the QBs
incorporating the EIT exhibit enhanced resistance to spontaneous decay as
compared to their counterparts without the EIT. It is believed that the findings
may provide valuable insights and shed the light on the design principles for
mitigating the degradation of the QBs.

1. Introduction

Classical batteries, as electrochemical devices, store energy and
provide power to electrical equipments.[1–3] Whether it is the 150
kWh battery packs in electric vehicles or the dry cells in remote
controls, batteries are ubiquitous in everyday life.[4] However,
with rapid technological advancements, the demand for minia-
turization has become increasingly urgent in cutting-edge fields
such as quantum computing,[5–7] nanotechnology,[8] and quan-
tum communication.[9,10] This trend has driven the miniatur-
ization of batteries. When their size is reduced to the atomic
and molecular scales, quantum-mechanical effects become sig-
nificant. This gave rise to the concept of quantum batteries
(QBs).[4,11–13]

Quantum thermodynamics, which explores energy conver-
sion, heat transfer, and entropy evolution in quantum systems,
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seeks to understand how quantum ef-
fects influence energy storage, transfer,
and conversion.[14–18] One of its signif-
icant applications is the QB.[19,20] Com-
posed of quantum bits (qubits) or quan-
tum oscillators, the QBs offer several ad-
vantages over traditional batteries, such
as significantly faster charging times,
higher energy-storage efficiency, greater
energy density, and increased precision
and control.[21,22] These features make
QBs a promising solution to energy chal-
lenges in advanced technologies. Since
the concept was introduced in 2013,[21]

the primary research has been focused
on how to store and extract energy ef-
ficiently in QBs.[23] Currently, the QB
models based on two-level systems are
widely studied.[11,24–26] These batteries
can interact with external agents, such

as driving fields, thermal baths, or other two-level systems, to
achieve charging. Despite their potential, QBs face practical chal-
lenges, one of the most notable being aging. In QBs, aging refers
to the gradual decline in energy storage and extraction efficiency
over time or after repeated charging-and-discharging cycles. Ag-
ing leads to reduced capacity, slower energy extraction, and even
an inability to store energy effectively. In quantum systems, aging
arises primarily from interactions with the external environment,
e.g., thermal baths, noise, or electromagnetic fields,[24] which
disrupt quantum states and lead to the loss of quantum coher-
ence and entanglement.[12] This phenomenon, known as deco-
herence, significantly impacts the energy storage and extraction
processes,[23] leading to performance degradation or battery ag-
ing. Decoherence is the process bywhich a quantum system loses
its quantum-state coherence over time. Numerous methods have
been proposed to suppress decoherence, such as environment
engineering,[27] feedback control,[28] and Floquet engineering.[29]

Inspired by these discoveries, in this paper, we explores using
the electromagnetically-induced transparency (EIT) to suppress
the aging of QBs.
The EIT is a quantum-optical phenomenon widely used in op-

tics and quantum information processing.[30–32] A classical EIT
system consists of a three-level system with the states |d⟩, |m⟩,
and |e⟩.[33] Here, |d⟩ is the initial state, and |m⟩ is the target state,
and |e⟩ is the intermediate state. The probe field acts between |d⟩
and |e⟩, while the driving field acts between |m⟩ and |e⟩. Under
these conditions, the system can enter a coherent state, which
is superposition of the bright states and dark states. The bright
state is usually associated with the intermediate state |e⟩, while
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Figure 1. Schematic of a QB against degradation by the EIT. a) The QB
is a two-level system including the ground state |g⟩ and the dark state|E1⟩. When a photon is absorbed and the atom is excited from |g⟩ to |E1⟩,
the QB is charged. However, when a photon is emitted and the atom is
deexcited from |E1⟩ to |g⟩, the QB is discharged. b) In order to realize the
dark state, a three-level configuration with two lower states |d⟩ and |m⟩,
and the higher intermediate state |e⟩ is employed. The Rabi frequencies
for the transitions |d⟩ ↔ |e⟩ and |m⟩ ↔ |e⟩ are respectively Ω1 and Ω2.
And Δ1 and Δ2 are respectively the two detunings.

the dark state is typically a superposition of |d⟩ and |m⟩.[34–36]
Since the dark state does not involve the intermediate state |e⟩,
it is unaffected by the dissipation due to the coupling to the en-
vironment and is thus highly stable. This stability makes dark
states less sensitive to environmental noise, andwhen a quantum
system is in a dark state, energy loss can be avoided. The aging
of QBs is largely due to decoherence caused by interactions with
the external environment. This insight suggests that dark states
could be employed to suppress decoherence, thereby extending
the operational lifespan of QBs. Compared to other methods for
suppressing decoherence, the EIT offers high stability and is rela-
tively easy to implement, making it a viable solution to the prob-
lem of the QB aging. Refs. [37,38] also introduce dark states to
suppress the dissipation in QB. Unlike them, we use a four-level
atom as the QB and, by adjusting the frequency of the driving
light, we can enhance the ergodicity of the QB.
This paper is structured as follows. In the next section, we

introduce the QB’s model. By incorporating the EIT effect into
a four-level atomic system, we can effectively obtain a two-level
atom with the dark state as the excited state. The detailed deriva-
tions are outlined in Appendix A. In Section 3, we consider that
the four-level atom is placed in a cavity and can be charged by
the photons inside the cavity. We investigate the energy and er-
gotropy of the QB with different numbers of atoms and photons
with and without the EIT effect. Some of the detailed calcula-
tions are provided in Appendix B. We also analytically calculate
the time evolution by the Wei-Norman algebra in Appendix C.
Our results show that the introduction of the EIT can effectively
suppress the decay of the QB’s energy. Finally, in the Section 5,
we summarize our main findings.

2. Model

First of all, we consider a three-level system as shown in
Figure 1b. The Hamiltonian reads

H = 𝜔d|d⟩⟨d| + 𝜔e|e⟩⟨e| + 𝜔m|m⟩⟨m| + 2Ω1 cos𝜔at|e⟩⟨d|
+ 2Ω2 cos𝜔bt|e⟩⟨m| + h.c. (1)

where 𝜔d, 𝜔e, and 𝜔m are respectively the energies of the states|d⟩, |e⟩ and |m⟩, the Rabi frequencies of the transitions |d⟩ ↔ |e⟩
and |m⟩ ↔ |e⟩ are respectively Ω1 and Ω2, 𝜔a, and 𝜔b are respec-
tively the driving frequencies. Here, we assume ℏ = 1 for sim-
plicity.
In the rotating frame with respect to U = exp[i(𝜔a|e⟩⟨e| +

𝜔c|m⟩⟨m|)t], where 𝜔b + 𝜔c = 𝜔a. Additionally, we apply the
rotating-wave approximation to eliminate the rapidly oscillat-
ing, high-frequency terms. The effective Hamiltonian Heff =
U†HU + iU̇†U is simplified as

Heff = 𝜔d|d⟩⟨d| + (𝜔e + 𝜔a)|e⟩⟨e| + (𝜔m + 𝜔c)|m⟩⟨m|
+Ω1(|e⟩⟨d| + |d⟩⟨e|) + Ω2(|e⟩⟨m| + |m⟩⟨e|) (2)

On account of the dissipation on |d⟩ with decay rate 𝜅, by using
the non-HermitianHamiltonian approach, the effectively Hamil-
tonian can be written in the matrix form as

H′
eff =

⎛⎜⎜⎜⎝
𝜔d − i𝜅 Ω1 0

Ω1 𝜔e + 𝜔a Ω2

0 Ω2 𝜔m + 𝜔c

⎞⎟⎟⎟⎠ (3)

After some algebra, the effective Hamiltonian can be rewritten
as

H′
eff = H0 + I(𝜔d − i𝜅) (4)

where

H0 =
⎛⎜⎜⎜⎝
0 Ω1 0

Ω1 𝜔1 Ω2

0 Ω2 𝜔2

⎞⎟⎟⎟⎠ (5)

𝜔1 = 𝜔e + 𝜔a − 𝜔d + i𝜅 (6)

𝜔2 = 𝜔m + 𝜔c − 𝜔d + i𝜅 (7)

According to Appendix A, the Hamiltonian H0 can be diago-
nalized as

H0 =
3∑
j=1

xj|Ej⟩⟨Ej| (8)

where the three eigen states are

|E1⟩ ≃ Ω2

N1
(−Ω2|d⟩ + Ω1|m⟩) (9)

|E2⟩ ≃ Ω1

N2
(Ω1|d⟩ + Ω|e⟩ + Ω2|m⟩) (10)

|E3⟩ ≃ Ω1

N3
(Ω1|d⟩ − Ω|e⟩ + Ω2|m⟩) (11)

By substitutingH0 intoH
′
eff , we can obtain

H′
eff =

3∑
j=1

x′j |Ej⟩⟨Ej| (12)
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Figure 2. Schematic of a QB with a collective of atoms in a cavity. There
are effectivelyN two-level atoms with the ground state g and the dark state
E1 located in a cavity.

where

x′1 =
Ω2
1

Ω2
(𝜔m + 𝜔c − 𝜔d) + 𝜔d − i

Ω2
2

Ω2
𝜅 (13)

x′2 = Ω +
𝜔e + 𝜔a

2
+
𝜔m + 𝜔c

2Ω2
Ω2
2 +

Ω2
1𝜔d

2Ω2
−
iΩ2

1𝜅

2Ω2
(14)

x′3 = −Ω +
𝜔e + 𝜔a

2
+
𝜔m − 𝜔c

2Ω2
Ω2
2 +

Ω2
1𝜔d

2Ω2
−
iΩ2

1𝜅

2Ω2
(15)

The imaginary parts of xj’s represent the relaxation rate of the
system. Compared to the original decay rate 𝜅, the current decay
rates are respectively Ω2

2𝜅∕Ω
2 for |E1⟩ and Ω2

1𝜅∕2Ω
2 for |E2⟩ and|E3⟩. If we tune Ω1 ≫ Ω2, we have Ω2

2𝜅∕Ω
2 ≃ 0 and Ω2

1𝜅∕2Ω
2 ≃

𝜅∕2. In other words, |E1⟩ is the dark state because its relaxation
has been significantly suppressed, while |E2⟩ and |E3⟩ are the two
bright states. In this regards, we utilize the dark state and the
ground state to establish a QB against the aging.

3. Numerical Simulation and Discussions

Based on the above discussions, as shown in Figure 2, whenN =
1, we consider a two-level atom with the ground state |g⟩ and the
dark state |E1⟩ in a cavity. The total Hamiltonian is

H = x′1|E1⟩⟨E1| + 𝜔a+a + Ja+𝜎− + Ja𝜎+ (16)

where J is the coupling constant between the atom and the cav-
ity, a† (a) is the creation (annihilation) operator of the cavitymode
with frequency 𝜔. 𝜎+ = |E1⟩⟨g| = (𝜎−)† is the atomic raising op-
erator.
In the subspace spanned by the two bases |n⟩|E1⟩ and |n +

1⟩|g⟩, the total Hamiltonian can be rewritten in the matrix form
as

H =

(
x′1 −

𝜔

2
J

J 𝜔

2

)
+
(
n + 1

2

)
𝜔 (17)

where the two eigen energies are

𝜆±n = 1
2

(
x′1 ±

√
4J2 + (𝜔 − x′1)

2

)
+
(
n + 1

2

)
𝜔 (18)

Figure 3. The effects of the EIT on the system’s energy E(t) and ergodicity
W(t) with N = 1 atom and n = 1 photon. a) E(t) and b) W(t) without the
EIT, c) E(t) and (d)W(t) with the EIT. The parameters are 𝜔 = 1, J = 0.5𝜔,
𝜔m = 0.5𝜔, 𝜔e = 𝜔, 𝜔d = 0.25𝜔,Ω1 = 50𝜔,Ω2 = 5𝜔, 𝜅 = 0.05𝜔. The red
solid line denotes the envelope which is numerically fitted by an exponen-
tial decay.

and the two eigen states are

|𝜓+
n ⟩ = 1

N+
n

(
J

𝜆+n − x′1 − n𝜔

)
(19)

|𝜓−
n ⟩ = 1

N−
n

(
J

𝜆−n − x′1 − n𝜔

)
(20)

N±
n =

√(
x′1 + n𝜔 − 𝜆±n

)2 + J2 (21)

are the normalization constants.
Assuming the initial state |n⟩|E1⟩, the time evolution of the

system can be given as

|𝜓(t)⟩ = ∑
𝛼=±

𝜆𝛼n − x′1 − n𝜔

N𝛼
n

e−i𝜆
𝛼
nt|𝜓𝛼

n ⟩ (22)

In the QB, the total Hamiltonian can be divided into three
parts asH = HA +HB +HI, whereHA is the Hamiltonian of the
charger, HB is the Hamiltonian of the QB, and HI is the inter-
action Hamiltonian between them. The ergotropy is equal to ref.
[23]

W(t) = Tr[𝜌B(t)HB] − Tr[𝜌̃B(t)HB] (23)

where the energy of the QB is E(t) = Tr[𝜌B(t)HB],
E0(t)= Tr[𝜌̃B(t)HB] is the energy of the passive state. Here,
𝜌B(t) =

∑
n rn|rn⟩⟨rn| is the reduced density matrix of the QB,

𝜌̃B(t)≡
∑

n rn|𝜀n⟩⟨𝜀n|, HB =
∑

n 𝜀n|𝜀n⟩⟨𝜀n|, r1 ≥ r2 ≥ ⋯, and
𝜀1 ≤ 𝜀2 ≤ ⋯. When W(t) = 0, the system is in a passive state,
which implies that we can not extract any energy from the
system. Figure 3 shows the system’s ergodicity over time. When
the EIT is absent, we can see that W(t) declines exponentially
with respect to the time. However, when the EIT is introduced,
W(t) generally oscillate with time. If we fit the envelope of W(t)
by an exponential function, we could obtain exp(−5.01 × 10−2𝜔t)
and exp(−6.76 × 10−4𝜔t) for the two cases respectively. In other
words, the decay of the ergodicity is reduced by two orders of
magnitude due to the presence of the EIT.
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Figure 4. a) The effects of the EIT on the system’s ergodicity as a function
of the dimensionless time 𝜔et and 𝜔c∕𝜔e and b) the inset shows the rela-
tion between E1 and 𝜔c∕𝜔e. The parameters are 𝜔e = 1 Ω1 = 50𝜔e, Ω2 =
5𝜔e, Ω =

√
Ω2
1 + Ω2

2, 𝜔d = 0.25𝜔e, 𝜔m = 0.5𝜔e, 𝜔a = x𝜔e, 𝜔b = 0.5𝜔e,

𝜔c = 𝜔a − 𝜔b, 𝜅 = 0.05𝜔e, 𝜔 = E1, and J = 0.5𝜔e.

Figure 5. Time evolution of the ergodicity W(t) as a function of the di-
mensionless time 𝜔et. The parameters are 𝜔e = 1 E1 = 𝜔e, J = 0.5𝜔e, and
𝜔 = 0.5𝜔e.

After the EIT is introduced in QB, the dissipation can not only
be reduced, but the ergodicity can also be enhanced by tuning the
parameters. We construct a dark state E1 as the effective excited
state by coupling the states d and m. According to Equation (9),
also shown in Figure 4b, the energy of the constructed excited
state E1 is positively correlated with 𝜔c. Hence, by adjusting 𝜔c,
the energy of the excited state can be increased.
In Figure 4, since 𝜔c = 𝜔a − 𝜔b, we fix 𝜔b and vary 𝜔a to tune

𝜔c. We found that the larger 𝜔c is, the greater the ergodicity be-
comes. By contrast, if we use the lower-dissipation state e as the
excited state, thereby forming a conventional two-level QB, cf.
Figure 5, the maximum ergodicity only reaches 1. Compared to
the traditional two-level QB, our system achieves a substantial
improvement in ergodicity with the introduction of only two aux-
iliary states, while reducing the system’s dissipation with the help
of the EIT. As a concrete example, we propose constructing the
QB using the 5S1∕2, 5P1∕2, 5P3∕2, and 6S1∕2 levels of rubidium
atoms.[39]

Figure 6 shows the quantum dynamical evolution of the sys-
tem. Initially, the system is in |0⟩|E1⟩. In the absence of the
EIT, the system decay significantly, as the oscillatory behavior
diminishes rapidly, leading to a noticeable reduction in the am-
plitude of the probability curves. However, when the EIT is in-

Figure 6. The probabilities of the two states |0⟩|E1⟩ (blue solid line) and|1⟩|g⟩ (red dotted line) over time a) without the EIT and b) with the EIT.
The parameters are the same as Figure 3. The purple dashed line denotes
the numerical fitting by an exponential function.

troduced, the two probabilities oscillate with the same ampli-
tude and frequency. Notably, the oscillations occur almost with-
out any observable decay. This suggests that the system’s energy
remains largely unchanged. Similarly, we can also fit the enve-
lope of the probabilities by an exponential function. Thus, we
obtain exp(−5.00 × 10−2𝜔t) and exp(−5.38 × 10−4𝜔t) for the two
cases respectively, which are consistent with those for the ergod-
icity in Figure 3. These suggest that due to the EIT, the dissipation
has been significantly suppressed and thus the ergodicity is im-
proved.
Furthermore, we consider a cavity with N quasi-two-level

atoms and a single photon. The Hamiltonian reads

H = 𝜔a†a +
N∑
j=1

(
x′1𝜎

+
j 𝜎

−
j + Ja𝜎+

j + h.c.
)

(24)

where 𝜎+
j = |E1⟩jj⟨g| = (𝜎−

j )
† is the raising operator of jth atom.

At time t, the total system is in the state

|𝜓(t)⟩ = [
c0(t)a

† +
n∑
i=1

ci(t)𝜎
+
i

]|G⟩|0⟩ (25)

where |G⟩ = |g⟩1 ⊗ |g⟩2 ⊗⋯⊗ |g⟩n is the state for all atoms be-
ing in the ground states. By substituting Equation (25) into the
Schrödinger equation, we can obtain

i ̇c0(t) = 𝜔c0(t) + J
n∑
j=1

cj(t) (26)

iċj(t) = x′1cj(t) + Jc0(t) (27)

where c0(0) = 1 and cj(0) = 0 are the initial conditions of this sys-
tem. By performing the Laplace transform  {df (t)∕dt} = sf̃ (s) −
f (0) on Equations (26) and (27), we can obtain

c̃0(s) =
i(is − x′1)

(is − 𝜔0)(is − x′1) − nJ2
(28)

c̃j(s) =
iJ

(is − 𝜔0)(is − x′1) − nJ2
(29)
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After some algebra, c̃0(s) and c̃j(s) can be rewritten as

c̃0(s) =
i(is − x′1)(

s − s+
)(
s − s−

)
=

A+

s − s+
+

A−

s − s−
(30)

c̃j(s) =
iJ(

s − s+
)(
s − s−

)
=

B+

s − s+
+

B−

s − s−
(31)

where

s± = −i
(𝜔0 + x′1) ±

√
(𝜔0 − x′1)

2 − nJ2

2
(32)

A± = ±
i(is± − x′1)

s+ − s−
(33)

B± = ±
iJ

s+ − s−
(34)

By using the inverse Laplace transform, we can obtain

c0(t) = A+e
s+t + A−e

s−t (35)

cj(t) = B+e
s+t + B−e

s−t (36)

By partially tracing the degrees of freedom of the cavity, the re-
duced density matrix of the atoms reads

𝜌B(t) = |c0|2|G⟩⟨g| + n∑
j=1

|cj|2𝜎+
j |G⟩⟨g|𝜎−

j

+
n∑
j=1

∑
k≠j

cjc
∗
k𝜎

+
j |G⟩⟨g|𝜎−

k (37)

As a result, the energy of the system EN
B (t) = Tr[𝜌B(t)HB] is equal

to x′1
∑n

j=1 |cj(t)|2.
Figure 7 shows the time evolution of the energy of the sys-

tem. Initially, the system is in an excited state. The energy of
the system decays significantly when the EIT is absent. How-
ever, when the EIT is introduced, the energy decay is markedly
suppressed. After fitting the envelopes of the probabilities by
an exponential function, we can obtain exp(−5.03 × 10−2𝜔t) and
exp(−5.78 × 10−4𝜔t) for the two cases, respectively. Here, we ex-
tend the single-atom system to a multi-atom system. The results
indicate that the EIT continues to suppresses the decay of system
energy, prolonging the lifetime of QB.
In the above calculations, we obtain the analytical solution by

the Laplace transform. Alternatively, hereafter we will obtain the
analytical solution by the Wei-Norman algebra. By introducing
the collective operators

Jz =
1
2

∑
j

𝜎zj (38)

J+ = J†− =
∑
i

𝜎+
j (39)

Figure 7. The effects of the EIT on the system’s energy E(t) and ergodicity
W(t) with N = 3 atoms and n = 1 photon. a) E(t) and b)W(t) without the
EIT, c) E(t) and d) E(t) with the EIT. The parameters are 𝜔 = 1, J = 0.5𝜔,
𝜔m = 0.5𝜔,𝜔e = 𝜔,𝜔d = 0.25𝜔,Ω1 = 50𝜔,Ω2 = 5𝜔, and 𝜅 = 0.05𝜔. The
red solid line denotes the envelope which is numerically fitted by an expo-
nential decay.

and using the Holstein-Primakoff transformation [40]

b†b = Jz +
N
2

(40)

J+ = b†
√
N

√
1 − b†b

N
≃ b†

√
N (41)

the Hamiltonian can be rewritten as

H ≃ 𝜔a†a + x′1b
†b + JN(ab

† + a†b) (42)

where the interaction JN = J
√
N between the cavitymode and the

collective excitation of the atoms has been enhanced by a factor√
N.
Assuming that the initial state of the cavity is in the coherent

state, and all of the two-level atoms are initially in the ground
state, i.e., |Ψ(0)⟩ = |√N⟩A ⊗ |0⟩B. According to Appendix C, the
state of the total system at time t reads

|Ψ(t)⟩ = |√N cos(JNt)⟩A ⊗ | − i
√
N sin(JNt)⟩B (43)

When there are three atoms and three photons in the cavity,
in Figure 8, we find that the maximum of the total energy is in-
creased as compared to the case with three atoms and one photon
because more atoms can be excited by photons. In addition, by
fitting the envelopes with an exponential function, we obtain a
decay rate with −1.91 × 10−3𝜔 (−1.94 × 10−1𝜔) for the case with
(without) the EIT. When the EIT is absent, both the system’s en-
ergy and ergotropy exhibit a rapid decay. However, when the EIT
is introduced, both the energy and ergotropy curves exhibit pro-
nounced oscillatory behavior. This indicates that the EIT does not
only slow down the energy loss but also preserves the oscillatory
characteristics of the system.
When two photons and Na = 2 atoms in the cavity, on account

of the dipole–dipole interaction,[44] the Hamiltonian becomes

H = 𝜔 a†a +HB + J
Na∑
i=1

(
a 𝜎+

i + a† 𝜎−
i

)
(44)
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Figure 8. The effects of the EIT on the system’s energy E(t) and ergodicity
W(t) withN = 3 atoms and n = 3 photons. a) E(t) and b)W(t) without the
EIT, c) E(t) and d)W(t) with the EIT. The parameters are 𝜔 = 1, J = 0.5𝜔,
𝜔m = 0.5𝜔, 𝜔e = 𝜔, 𝜔d = 0.25𝜔,Ω1 = 50𝜔,Ω2 = 5𝜔, 𝜅 = 0.05𝜔. The red
solid line denotes the enelope which is numerically fitted by an exponential
decay.

where the Hamiltonian of the QB reads

HB = x′1

Na∑
i=1
𝜎+
i 𝜎

−
i +

Na∑
i≠j

V
(
𝜎+
i 𝜎

−
j + 𝜎−

i 𝜎
+
j

)
(45)

Its eigenvalues and eigenstates are respectively

EG = 0, |G⟩ = |gg⟩ (46)

Eq = E1 + V, |q⟩ = 1√
2

(|eg⟩ + |ge⟩) (47)

Ep = E1 − V, |p⟩ = 1√
2

(|eg⟩ − |ge⟩) (48)

EE = 2E1, |E⟩ = |ee⟩ (49)

here, |q⟩ is the symmetric state and |p⟩ the antisymmetric state.
Since

2∑
i=1
𝜎+
i |G⟩ = |eg⟩ + |ge⟩ = √

2 |q⟩ (50)

2∑
i=1
𝜎+
i |q⟩ = 1√

2
(|ee⟩ + |ee⟩) = √

2 |E⟩ (51)

2∑
i=1
𝜎+
i |p⟩ = 1√

2
(|ee⟩ − |ee⟩) = 0 (52)

2∑
i=1
𝜎+
i |E⟩ = 0 (53)

in the eigenbasis of HB, the total Hamiltonian can be rewritten
as

H = 𝜔 a†a +HB +
√
2 Ja( |q⟩⟨G| + |E⟩⟨q|) + h.c. (54)

Originally, the system include two excitation pathways, |gg⟩↔|eg⟩↔ |ee⟩ and |gg⟩↔ |ge⟩↔ |ee⟩. However, after including the
dipole–dipole interaction, only one pathway remains, i.e., |gg⟩↔|q⟩↔ |ee⟩, indicating a reduction in available transition channels.

Figure 9. Ergodicity as a function of the dipole-dipole interaction V be-
tween the atoms and the time t for two atoms and two photons in the
cavity (a) without the EIT and (b) with the EIT. The parameters are 𝜔 =
1, J = 0.5𝜔, 𝜔m = 0.5𝜔, 𝜔e = 𝜔, 𝜔d = 0.25𝜔, Ω1 = 50𝜔, Ω2 = 5𝜔, and
𝜅 = 0.05𝜔.

Furthermore, we consider the effect of the dipole–dipole cou-
pling on the ergodicity. The QB Hamiltonian can be written in
the basis {|G⟩, |p⟩, |q⟩, |E⟩} as
HB =

⎛⎜⎜⎜⎝
0 0 0 0
0 E1 − V 0 0
0 0 E1 + V 0
0 0 0 2E1

⎞⎟⎟⎟⎠ (55)

And the density matrix is 𝜌B =
∑

𝛼=G,q,p,E P𝛼|𝛼⟩⟨𝛼|. Ordering its
eigenvaluesP𝛼′ in descending order yields 𝜌B =

∑4
𝛼′=1 P𝛼′ |𝛼′⟩⟨𝛼′|,

which will be used in evaluating the ergodicity.
When there are two atoms and two photons, the dynamics of

the ergodicity is shown in Figure 9. When the system does not
include the EIT, the atoms exhibit large dissipation, causing the
energy of the QB to decay more rapidly over time, as shown in
Figure 9a. However, one can see that when the EIT is introduced,
the decay of the maximum ergodicity of the QB will be signifi-
cantly slowed down. Interestingly, the first time for the ergodic-
ity to reach the maximum will be delayed and its duration will be
prolonged as V increases.
Furthermore, we consider there areNa = 3 atoms in the cavity.

Since the antisymmetric states do not couple to the cavity field, we
restrict ourselves to the four fully-symmetric eigenstates. They
and their eigenvalues are listed as

E0 = 0, |D3,0⟩ = |ggg⟩ (56)

E1 = E1 + 2V, |D3,1⟩ = 1√
3

(|egg⟩ + |geg⟩ + |gge⟩) (57)

E2 = 2E1 + 2V, |D3,2⟩ = 1√
3

(|eeg⟩ + |ege⟩ + |gee⟩) (58)

E3 = 3E1, |D3,3⟩ = |eee (59)

Expanding the full Hamiltonian in the basis {|D3,k⟩}, one finds
H = 𝜔a†a +

3∑
k=0

Ek |D3,k⟩⟨D3,k| (60)

+ J
(√

3 a |D3,1⟩⟨D3,0| + 2 a |D3,2⟩⟨D3,1| (61)

+
√
3 a |D3,3⟩⟨D3,2|) + h.c. (62)
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Figure 10. Ergodicity as a function ofV and t for a systemwith 3 atoms and
3 photons in the cavity with the EIT. The parameters are 𝜔 = 1, J = 0.5𝜔,
𝜔m = 0.5𝜔, 𝜔e = 𝜔, 𝜔d = 0.25𝜔, Ω1 = 50𝜔, Ω2 = 5𝜔, and 𝜅 = 0.05𝜔.

Unlike the case of two atoms in the cavity, when there are three
atoms in the cavity, the level spacings between the two neighbor-
ing eigenstates are respectively E1 − E0 = E1 + 2V , E2 − E1 = E1,
E3 − E2 = E1 − 2V . When the photon energy equals E1, the de-
tunings are −2V , 0, and 2V . Because the correspond oscillation
frequencies are not the same, it leads to a more-complex situ-
ation. In Figure 10, we find that as V increases, the maximum
ergodicity gradually decreases. Since the value of V decreases
rapidly with increasing interatomic distance, in practice we can
reduce the influence of dipole-dipole interactions by increasing
the distances between atoms.
When an electromagnetic drive with frequency 𝜔L and Rabi

frequency Ω is applied, and the cavity contains two photons, the
total Hamiltonian with Na = 2 atoms becomes

Htot = x′1

Na∑
i=1
𝜎+
i 𝜎

−
i +

∑
i≠j

V
(
𝜎+
i 𝜎

−
j + 𝜎−

i 𝜎
+
j

)
+Hd (63)

where

Hd =
Na∑
i=1

Ω
2

(
𝜎+
i e

−i𝜔Lt + 𝜎−
i e

+i𝜔Lt
)

(64)

Transforming into the rotating frame defined by U(t) =
exp

(
−i𝜔L

∑
i 𝜎

+
i 𝜎

−
i t
)
and applying the rotating–wave approxima-

tion yields

Heff =
Na∑
i=1

(
ΔL𝜎

+
i 𝜎

−
i + Ω

2
𝜎+
i

)
+

Na∑
i≠j

V𝜎+
i 𝜎

−
j + h.c. (65)

with ΔL = E1 − 𝜔L. Focusing on the QB, we have

HB = ΔL 𝜎
+𝜎− + Ω

2
(𝜎+ + 𝜎−) (66)

whose eigenvalues are E± =
(
ΔL ±

√
Δ2

L + Ω2
)
∕2. For ΔL ≫ Ω,

since
√

Δ2
L + Ω2 ≈ ΔL + (Ω2∕2ΔL), we have

Figure 11. The time evolution of the ergodicity with a) V = 2 and b) V = 1.
The blue solid line represents the QB without dissipation, the green dot-
ted line represents the QB with the EIT, and the red dashed line represents
the QB without the EIT. The parameters are 𝜔 = 1, J = 0.5𝜔, 𝜔m = 0.5𝜔,
𝜔e = 𝜔, 𝜔d = 0.25𝜔, Ω1 = 50𝜔, Ω2 = 5𝜔, tc = 1.6∕𝜔, 𝜎 = 0.8∕𝜔 and
𝜅 = 0.05𝜔. Notice that the blue solid line almost overlaps with the green
dotted line.

E+ = ΔL +
Ω2

4ΔL
(67)

E− = − Ω2

4ΔL
(68)

In other words, the excited level is shifted up by Ω2

4ΔL
while the

ground level is shifted down by the same amount. Consequently,
the total Hamiltonian can be recast as

Htot =
(
E1 +

Ω2

2ΔL

) Na∑
i=1
𝜎+
i 𝜎

−
i +

∑
i≠j

V𝜎+
i 𝜎

−
j + h.c. (69)

We further consider a Gaussian pulse with Ω(t) =
Ω0 exp

[
−(t − tc)

2∕2𝜎2
]
is used to excite the atoms, where tc

is the center of the pulse, 𝜎 is the width of the pulse. As shown
in Figure 11, the introduction of the EIT effectively suppresses
the dissipation of the QB. In this process, the parameter V also
affects the ergodicity. Therefore, the dipole–dipole interaction
should be minimized as much as possible.

4. Implementation of a Four-Level Quantum
Battery

As a concrete example, we propose constructing the QB using
the 5S1∕2, 5P1∕2, 5P3∕2, and 6S1∕2 levels of rubidium atoms.[39]

First of all, we prepare the rubidium atoms by heating a Rb
dispenser to release vapor into the ultra-high-vacuum cham-
ber. We then employ a magneto-optical trap (MOT),[45–47] us-
ing counter-propagating 𝜎+∕𝜎− cooling beams red-detuned by
10–20 MHz and an anti-Helmholtz coil generating a position-
dependent magnetic field gradient, to cool the atoms from ther-
mal velocities down to approximately 100 𝜇K.
Next, a fraction of these cold atoms, on the order of 105–106,

is loaded into a red-detuned optical dipole trap (ODT)[48–50] at
1064 nm. The inhomogeneous intensity profile of the ODT fur-
ther reduces their temperature to a few microkelvin. By adiabat-
ically transporting the ODT beam via a frequency-shifted optical
conveyor, we transfer the atoms into the mode volume of a high-
finesse Fabry–Pérot cavity.
Finally, we apply two phase-locked coupling lasers on the Λ-

type subsystem formed by the 5P1∕2, 5P3∕2, and 6S1∕2 levels. These
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two coherent fields drive the ground state 5S1∕2 into a long-lived
dark-state polariton, thereby realizing the desired QB.

5. Conclusion

In summary, we introduce EIT into a four-level atom and trans-
form it into an effectively two-level system consisting of the
ground state and the dark state. We then replace the two-level
atoms in the QB with these quasi-two-level atoms. Three distinct
models are developed: one featuring a single atom and a single
photon within a cavity, another with multiple atoms and a single
photon, and the third with multiple atoms andmultiple photons.
We also consider the impact of the dipole–dipole interaction on
the ergotropy. Finally, we explore the possibility of using pulses
to excite our QB. We investigate the evolution of the QB’s en-
ergy and ergotropy in thesemodels and find that the introduction
of EIT significantly suppresses the decay of both energy and er-
gotropy compared to scenarios without EIT. Under the specified
parameter conditions, the decay rate of the system is reduced by
two orders of magnitude upon incorporating EIT. Moreover, by
adjusting the coupling frequency 𝜔c, the ergotropy of the system
can be further enhanced. This study demonstrates that the in-
troduction of EIT can significantly extend the lifetime of QBs.
Additionally, the energy transfer efficiency during the charging
process is improved. These advancements not only enhance the
performance of QBs but also pave the way for their broader ap-
plication in various technological fields.

Appendix A: Diagonization of H0

In this appendix, we will diagonalize H0 by the perturbation theory. Ac-
cording to the Schrödinger equation H|x⟩ = x|x⟩, we can obtain the eigen
energies x’s by the following equation, i.e.,

x
[
x2 − (𝜔1 + 𝜔2)x + 𝜔1𝜔2 − Ω2] + Ω2

1𝜔2 = 0 (A1)

where

Ω2 = Ω2
1 + Ω2

2 (A2)

When 𝜔2 is small, to the first order of 𝜔2, the solutions can be written
as

xj ≃ x0j + Aj𝜔2 (A3)

According to the perturbation theory, the zero-order terms are given by

x0j
[
x20j − (𝜔1 + 𝜔2)x0j + 𝜔1𝜔2 − Ω2

]
= 0 (A4)

where

x01 = 0 (A5)

x02 = 𝜔+ (A6)

x03 = 𝜔− (A7)

𝜔± = 1
2

[
(𝜔1 + 𝜔2) ±

√
(𝜔1 − 𝜔2)2 + 4Ω2

]
(A8)

After some algebra, we can rewrite Equation (A1) as

x(x − 𝜔+)(x − 𝜔−) + Ω2
1𝜔2 = 0 (A9)

By substituting x′1 = A1𝜔2 into the above equation, we have

A1𝜔2(A1𝜔2 − 𝜔+)(A1𝜔2 − 𝜔−) + Ω2
1𝜔2 = 0 (A10)

Ignoring higher-order terms of 𝜔2, we can obtain

A1 = −
Ω2
1

𝜔+𝜔−
≃

Ω2
1

Ω2
(A11)

By repeating the above procedure, we have

A2 = −
Ω2
1

𝜔+(𝜔+ − 𝜔−)
≃ −

Ω2
1

2Ω2
(A12)

A3 =
Ω2
1

𝜔−(𝜔+ − 𝜔−)
≃ −

Ω2
1

2Ω2
(A13)

When 𝜔1,𝜔2 ≪ Ω1,Ω2, to the first-order terms of 𝜔1 and 𝜔2, we can
obtain

𝜔± ≃ 1
2
[(𝜔1 + 𝜔2) ± 2Ω] (A14)

In all, the eigen energies are respectively

x′1 ≃
Ω2
1

Ω2
𝜔2 (A15)

x2 ≃ Ω + 1
2

(
𝜔1 +

Ω2
2

Ω2
𝜔2

)
(A16)

x3 ≃ −Ω + 1
2

(
𝜔1 +

Ω2
2

Ω2
𝜔2

)
(A17)

Correspondingly, the eigen states are

|Ei⟩ = 1
Ni

{[
(xi − 𝜔1)(xi − 𝜔2) − Ω2

2

]|g⟩ (A18)

+ Ω1(xi − 𝜔2)|e⟩ + Ω1Ω2|m⟩} (A19)

where the normalization constants Ni’s are given by

N2
i =

|||(xi − 𝜔1)(xi − 𝜔2) − Ω2
2
|||2 + ||Ω1(xi − 𝜔2)||2

+ ||Ω1Ω2
||2 (A20)

To the zero-order terms of 𝜔1 and 𝜔2, we have

|E1⟩ ≃ Ω2

N1
(−Ω2|d⟩ + Ω1|m⟩) (A21)

|E2⟩ ≃ Ω1

N2
(Ω1|d⟩ + Ω|e⟩ + Ω2|m⟩) (A22)

|E3⟩ ≃ Ω1

N3
(Ω1|d⟩ − Ω|e⟩ + Ω2|m⟩) (A23)

where |E1⟩ is the dark state because it is a superposition of |d⟩ and |m⟩.
The other two eigen states |E2⟩ and |E3⟩ are referred to as the bright
states, because in addition to |m⟩ they also contain |e⟩, which suffers
more from decoherence. The decoherence will cause the aging of the
QB. Therefore, we introduce |E1⟩ to the QB in order to suppress the
decoherence.

Ann. Phys. (Berlin) 2025, e00278 © 2025 Wiley-VCH GmbHe00278 (8 of 11)

 15213889, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/andp.202500278 by B

eijing N
orm

al U
niversity, W

iley O
nline L

ibrary on [16/09/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.ann-phys.org


www.advancedsciencenews.com www.ann-phys.org

Appendix B: Reduced Density Matrix of QB

In this appendix, we derive the maximum extractable energy. According to
Equations (19)–(20), |𝜓+

n ⟩ and |𝜓−
n ⟩ can be written in terms of the basis|n⟩|E1⟩ and |n + 1⟩|g⟩ as

|𝜓±
n ⟩ =

(
c±
d±

)
(B1)

where

c± =
J√(

x′1 + n𝜔 − 𝜆±n
)2 + J2

(B2)

d± =
𝜆±n − x′1 − n𝜔√(

x′1 + n𝜔 − 𝜆±n
)2 + J2

(B3)

In the basis |n⟩|E1⟩ and |n + 1⟩|g⟩, the time-evolution operator

U(t) = e−iHt =
∑
𝛼=±

e−i𝜆
𝛼
n t|𝜓𝛼n ⟩⟨𝜓𝛼n | (B4)

can be rewritten as

U′(t) = PU(t)P−1

=
⎛⎜⎜⎜⎝
c−d+e

−i𝜆−n t−c+d−e−i𝜆
+
n t

c−d+−c+d−
c+c−(e

−i𝜆+n t−e−i𝜆
−
n t)

c−d+−c+d−

d+d−(e
−i𝜆−n t−e−i𝜆

+
n t)

c−d+−c+d−
c−d+e

−i𝜆+n t−c+d−e−i𝜆
−
n t

c−d+−c+d−

⎞⎟⎟⎟⎠ (B5)

where

P =

(
c+ c−
d+ d−

)
(B6)

Initially, the system is in the state |𝜓0⟩ = 𝛼|n⟩|E1⟩ + 𝛽|n + 1⟩|g⟩. The
density matrix 𝜌(t) = U′(t)𝜌(0)U′†(t) at time t reads

𝜌(t) = 1|c2d1 − c1d2|2
(
M11 M12
M21 M22

)
(B7)

where

M11 =
(
c∗+d

∗
−e

i𝜆+n t − c∗−d
∗
+e

i𝜆−n t
)

×
[
(c+d−e

−i𝜆+n t − c−d+e
−i𝜆−n t)|𝛼|2 + c+c−(e

−i𝜆+n t − e−i𝜆
−
n t)𝛽𝛼∗

]
+ c∗+c

∗
−(e

i𝜆+n t − ei𝜆
−
n t)

×
[
c+c−(e

−i𝜆+n t − e−i𝜆
−
n t)|𝛽|2 + (−c+d−e−i𝜆

+
n t + c−d+e

−i𝜆−n t)𝛼𝛽∗
]
(B8)

M12 = d∗+d
∗
−(e

i𝜆+n t − ei𝜆
−
n t)

×
[
(c+d−e

−i𝜆+n t − c−d+e
−i𝜆−n t)|𝛼|2 + c+c−(e

−i𝜆+n t − e−i𝜆
−
n t)𝛽𝛼∗

]
+
(
c∗−d

∗
+e

i𝜆+n t − c∗+d
∗
−e

i𝜆−n t
)

×
[
c+c−(e

−i𝜆+n t − e−i𝜆
−
n t)|𝛽|2 + (−c+d−e−i𝜆

+
n t + c−d+e

−i𝜆−n t)𝛼𝛽∗
]
,

(B9)

M21 =
(
c∗+d

∗
−e

i𝜆+n t − c∗−d
∗
+e

i𝜆−n t
)

×
[
d+d−(e

−i𝜆+n t − e−i𝜆
−
n t)|𝛼|2 + (−c−d+e−i𝜆

+
n t + c+d−e

−i𝜆−n t)𝛽𝛼∗
]

+ c∗+c
∗
−(e

i𝜆+n t − ei𝜆
−
n t)

×
[
(c−d+e

−i𝜆+n t − c+d−e
−i𝜆−n t)|𝛽|2 + d+d−(−e−i𝜆

+
n t + e−i𝜆

−
n t)𝛼𝛽∗

]
,

(B10)

M22 = d∗+d
∗
−(e

i𝜆+n t − ei𝜆
−
n t)

×
[
d+d−(e

−i𝜆+n t − e−i𝜆
−
n t)|𝛼|2 + (−c−d+e−i𝜆

+
n t + c+d−e

−i𝜆−n t)𝛽𝛼∗
]

+
(
c∗−d

∗
+e

i𝜆+n t − c∗+d
∗
−e

i𝜆−n t
)

×
[
(c−d+e

−i𝜆+n t − c+d−e
−i𝜆−n t)|𝛽|2 + d+d−(−e−i𝜆

+
n t + e−i𝜆

−
n t)𝛼𝛽∗

]
.

(B11)

Thus, the reduced density matrix of the QB is

𝜌B(t) =
1|c2d1 − c1d2|2

(
M11 0
0 M22

)
(B12)

By substituting the above equation intoW(t) = Tr[𝜌B(t)HB] − Tr[𝜌̃B(t)HB],
we can obtain the time evolution of the system’s ergodicity.

Appendix C: Time Evolution by Wei-Norman
Algebra

In this appendix, we will unravel the time evolution by Wei-Norman alge-
bra.

Since

[ab†, b†b − a†a] = −2ab† (C1)

[a†b, b†b − a†a] = 2a†b (C2)

[ab†, a†b] = b†b − a†a (C3)

the set of operators {ab†, a†b, b†b − a†a} = {H1, H2, H3} forms a com-
plete set. In order to solve the time-evolution operator U(t) = exp(−iHt),
we can use the Wei-Norman algebra.[41,42] The Hamiltonian H can be
rewritten in terms of the above operators as H = f1H1 + f2H2 + f3H3.
Thus, the time-evolution operator in the interaction picture can be given
as the product of a series of exponential operators, i.e.,

UI(t) =
3∏
j=1

exp[gj(t)Hj] (C4)

where gi(t) is a function of time and Hi’s are the generators of the Wei-
Norman algebra. In the interaction picture, the time-evolution operator is
determined by

i
dUI(t)
dt

= HIUI(t) (C5)

By substituting Equation (C4) into the above equation, we have

HI = i( ̇g1H1 + eg1H1 ̇g2H2e
−g1H1

+ eg1H1eg2H2 ̇g3H3e
−g2H2e−g1H1 ) (C6)
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Using the Baker-Campbell-Hausdorff formula,[43] we can obtain

eg1H1 ġ2H2e
−g1H1 = ̇g2[a

†b + g1(b
†b − a†a) − g21ab

†] (C7)

By repeating the above procedure, we have

ġ3[2g2a
†b − (2g1 + 2g21g2)ab

† + (1 + 2g1g2)(b
†b − a†a)]

= eg1H1eg2H2 ġ3H3e
−g2H2e−g1H1 (C8)

By substituting Equations (C7) and (C8) into HI, we can obtain

HI = i
{
(ġ2 + 2ġ3g2)a

†b

+
[
ġ1 − ġ2g

2
1 − ġ3(2g1 + 2g21g2)

]
ab†

+ [ġ2g1 + ġ3(1 + 2g1g2)](b
†b − a†a)

}
(C9)

By comparing the above equation with HI = J
√
N(ab† + a†b), we have

ġ1 − ġ2g
2
1 − ġ3(2g1 + 2g21g2) = −iJN (C10)

ġ2 + 2ġ3g2 = −iJN (C11)

ġ2g1 + ġ3(1 + 2g1g2) = 0 (C12)

Assuming the initial condition g1(0) = g2(0) = g3(0) = 0, we can obtain

g1 = −i tan(JNt) (C13)

g2 = − i
2
sin(2JNt) (C14)

g3 = − ln[cos(JNt)] (C15)

Therefore, the time-evolution operator reads

U(t) = U0(t)UI(t) (C16)

U0(t) = exp
[
−i𝜔0t(a

†a + b†b)
]

(C17)

UI(t) = eg1ab
†
eg2a

†beg3(b
†b−a†a) (C18)

Acknowledgements
This work was supported by the Innovation Program for Quantum Science
and Technology under Grant No. 2023ZD0300200, the National Natural
Science Foundation of China under Grant No. 62461160263, the Beijing
Natural Science Foundation under Grant No. 1202017, and the Beijing
Normal University under Grant No. 2022129.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available from the cor-
responding author upon reasonable request.

Keywords
dark states, electromagnetically-induced, quantum batteries

Received: June 30, 2025
Published online:

[1] R. A. Dunlap, O. Mao, J. R. Dahn, Phys. Rev. B 1999, 59, 3494.
[2] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K.

Geim, Rev. Mod. Phys. 2009, 81, 109.
[3] P. Parmananda, P. Sherard, R. W. Rollins, H. D. Dewald, Phys. Rev. E

1993, 47, R3003.
[4] F. Campaioli, F. A. Pollock, S. Vinjanampathy, Thermodynamics in the

Quantum Regime: Fundamental Aspects and New Directions, (Eds.: F.
Binder, L. A. Correa, C. Gogolin, J. Anders, G. Adesso), Springer,
Switzerland 2018.

[5] , K. Tordrup, A. Negretti, K. Mølmer, Phys. Rev. Lett. 2008, 101,
040501.

[6] N. Berthusen, D. Devulapalli, E. Schoute, A. M. Childs, M. J. Gullans,
A. V. Gorshkov, D. Gottesman, PRX Quantum 2025, 6, 010306.

[7] L. A. Pettersson, A. S. Sørensen, S. Paesani, PRX Quantum 2025, 6,
010305.

[8] I. Soloviev, S. Bakurskiy, V. Ruzhickiy, N. Klenov, M. Kupriyanov, A.
Golubov, O. Skryabina, V. Stolyarov, Phys. Rev. Appl. 2021, 16, 044060.

[9] C. A. Vincent, B. Scrosati,Modern Batteries: An Introduction to Electro-
chemical Power Sources, 2nd ed., Butterworth-Heinemann, UK 1997.

[10] L. Labonté, O. Alibart, V. D’Auria, F. Doutre, J. Etesse, G. Sauder, A.
Martin, E. Picholle, S. Tanzilli, PRX Quantum 2024, 5, 010101.

[11] W.-L. Song, H.-B. Liu, B. Zhou, W.-L. Yang, J.-H. An, Phys. Rev. Lett.
2024, 132, 090401.

[12] F. H. Kamin, F. T. Tabesh, S. Salimi, A. C. Santos, Phys. Rev. E 2020,
102, 052109.

[13] T. P. Le, J. Levinsen, K. Modi, M. M. Parish, F. A. Pollock, Phys. Rev. A
2018, 97, 022106.

[14] S. Deffner, S. Campbell, Quantum Thermodynamics: An Introduction
to the Thermodynamics of Quantum Information, Iop Concise Physics
Publishing, UK 2019.

[15] D. Mayer, E. Lutz, A. Widera, Commun. Phys. 2023, 6, 61.
[16] G. Maslennikov, S. Ding, R. Hablützel, J. Gan, A. Roulet, S.

Nimmrichter, J. Dai, V. Scarani, D.Matsukevich,Nat. Commun. 2019,
10, 202.

[17] J. Zhou, A. Li, M. Galperin, Phys. Rev. B 2024, 109, 085408.
[18] M. L. Bera, T. Pandit, K. Chatterjee, V. Singh, M. Lewenstein, U.

Bhattacharya, M. N. Bera, Phys. Rev. Res. 2024, 6, 013318.
[19] F. Campaioli, S. Gherardini, J. Q. Quach, M. Polini, G. M. Andolina,

Rev. Mod. Phys. 2024, 96, 031001.
[20] S. Bhattacharjee, A. Dutta, Eur. Phys. J. B 2021, 94, 239.
[21] R. Alicki, M. Fannes, Phys. Rev. E 2013, 87, 042123.
[22] D. Ferraro, M. Campisi, G. M. Andolina, V. Pellegrini, M. Polini, Phys.

Rev. Lett. 2018, 120, 117702.
[23] G. M. Andolina, M. Keck, A. Mari, M. Campisi, V. Giovannetti, M.

Polini, Phys. Rev. Lett. 2019, 122, 047702.
[24] F. Pirmoradian, K. Mølmer, Phys. Rev. A 2019, 100, 043833.
[25] A. Crescente, M. Carrega, M. Sassetti, D. Ferraro, Phys. Rev. B 2020,

102, 245407.
[26] W.-X. Guo, F.-M. Yang, F.-Q. Dou, Phys. Rev. A 2024, 109, 032201.
[27] K. Xu, H.-G. Li, Z.-G. Li, H.-J. Zhu, G.-F. Zhang, W.-M. Liu, Phys. Rev.

A 2022, 106, 012425.
[28] Y. Yao, X. Q. Shao, Phys. Rev. E 2022, 106, 014138.
[29] S.-Y. Bai, J.-H. An, Phys. Rev. A 2020, 102, 060201(R).
[30] M. Fleischhauer, A. Imamoglu, J. P. Marangos, Rev. Mod. Phys. 2005,

77, 633.
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