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Quantum simulation of bound-state-enhanced quantum metrology
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Quantum metrology explores quantum effects to improve the measurement accuracy of some physical
quantities beyond the classical limit. However, due to the interaction between the system and the environment,
the decoherence can significantly reduce the accuracy of the measurement. Many methods have been proposed
to restore the accuracy of the measurement in the long-time limit. Recently, it was found that the bound state
can help improve measurement accuracy and recover the t−1 scaling [Bai et al., Phys. Rev. Lett. 123, 040402
(2019)]. Here, by using N qubits, we propose a method to simulate the open quantum dynamics of a hybrid
system including one atom and coupled resonators. We find that the error of the measurement can decrease as
the time increases due to the existence of the bound state. With both analytical and numerical simulations, we
prove the t−1 scaling of the measurement error can be recovered when there is a bound state in the hybrid system.
Interestingly, we observe that there are regular oscillations which can be used for the evaluation of the atomic
transition frequency. For a finite N , the duration of the regular oscillations doubles as one more qubit is involved.
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I. INTRODUCTION

Compared with classical metrology, quantum metrology
can greatly improve measurement accuracy and can play
a significant role in gravitational-wave detection [1–3] and
quantum radar [4–6], atomic clocks [7–10], magnetome-
ters [11–13], gravimeters [14,15], navigation and biological
monitoring [16–21], quantum biology [17–19], and so on. Ac-
cording to the central-limit theorem [22,23], if one performs
a large number of measurements, the error of the measure-
ments will be reduced by a factor

√
M, with M being the

number of measurements, i.e., the shot-noise limit (SNL)
or the standard quantum limit [23]. Quantum metrology ex-
plores quantum entanglement [24–26], coherence [27–29],
and squeezing [30–32] to improve the accuracy of the mea-
surement in order to reach the Heisenberg limit (HL), which
scales as M−1. As long as the system-bath interaction is
present, the measurement of a specific physical quantity is
inevitably affected by the error. The precision of quantum
metrology in a Markovian bath is reduced to the SNL [33].
The SNL can also be overcome in non-Markovian noise and
can thus achieve the Zeno limit (ZL), i.e., M−3/4 [34–36].

The Ramsey spectrum is widely used in practical quantum
metrology, which approaches the HL when noise is absent
[37]. However, in practice, since the system is open to the
environment, the measurement accuracy of physical quanti-
ties will be affected by environmental noise. In the presence
of Markovian pure-dephasing noise, the accuracy is reduced
from the HL back to the SNL [33]. Although under non-
Markovian noises the accuracy can reach the ZL, it is still
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lower than the HL [35,36,38,39]. In both cases, the measure-
ment error will diverge over time. In order to improve the
measurement accuracy, many methods have been proposed,
such as purification [40], error correction [41–43], nonde-
generate measurements [44], and bound states outside the
continuum [23,45]. None of these proposals recover the HL,
and they especially fail to resolve the issue of error diverging
over time. It is natural to ask the question of how one can
restore the measurement error without it diverging over time.

Recent studies have shown that when there is a bound
state in the open quantum system, it allows the measurement
precision to beat the SNL and recover the ZL over long
encoding times [45]. The bound state is an interesting state
that can be observed in the boson-impurity model in which
two-level systems are coupled to a boson bath. Here, the
impurity is the emitter (e.g., atom), and the boson bath is
the electromagnetic-field mode [46]. Bound states can possess
many interesting phenomena, such as fractional decay, local-
ized phase transitions [46], Cooper pairs in superconductivity
[47], and polarons in electron transport [48]. On the other
hand, we notice that a hybrid system including a few atoms
and a coupled cavity array has been extensively studied in the
past decade. It can be used for single-photon switch [49,50],
quantum transistors [51], routers [52], supercavities [53], non-
reciprocal optics [54], and frequency converters [55]. Inspired
by these discoveries, in this paper, we propose a scheme to
simulate the open quantum dynamics of an atom in coupled
resonators. Here, the coupled resonators form a structured
bath with the energy band centered at the cavity frequency
and a bandwidth 4 times the intercavity coupling. When the
atomic transition frequency lies within the energy band of the
bath, the probability of the atomic excited state will appear to
be periodic oscillations with a single frequency, i.e., regular
oscillations, indicating that the hybrid system made up of the
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FIG. 1. Schematic illustration of a two-level atom and a coupled-
cavity array. (a) Structure of coupled cavities and (b) a two-level
atom.

atom and the coupled resonators is in a bound state at this
time. Therefore, the bound state is the superposition of the
atomic excited state and photons localized in a few cavities
around the cavity where the atom exists. The duration of the
regular oscillations is finite and is determined by the number
of cavities in the coupled-cavity array. In this case, we find
that the uncertainty of the measured transition frequency of
the atom decreases over coding time as t−1 on the duration of
the regular oscillations.

This paper is organized as follows. In the next section,
we introduce our simulation scheme. By using N qubits, we
can effectively simulate the quantum dynamics of one atom
and 2N − 1 coupled cavities. We also provide the probability
of the atomic excited state and the standard deviation of the
measured atomic transition frequency, detailed derivations of
which are shown in Appendixes A and B, respectively. Then,
in Sec. III, we use the direct mapping method, which is given
in Appendix C, to numerically simulate the dynamics of the
atomic excited state. We explore the relation between the
duration, frequency, amplitude, and mean of the regular oscil-
lations and the number of cavities. We use both analytical and
numerical methods to verify that the error of the measurement
decreases over time in the presence of a bound state. We find
that the standard deviation of the measured atomic transition
frequency on the scale t−1 can be achieved. In Sec. IV, we
summarize our main findings.

II. SCHEME

We consider the interaction between a two-level atom and
a coupled-cavity array [56]. As shown in Fig. 1, the Hamilto-
nian of the system reads

H = H0 + HI , (1)

H0 =�|e〉〈e| +
jM∑

j=− jM

[ω0a†
j a j − ξ (a†

j a j+1 + a†
j+1a j )], (2)

HI = J (a†
0σ− + a0σ+), (3)

where � is the transition frequency of the atom; a†
j (a j) creates

(annihilates) a photon with frequency ω0 in the jth cavity;
ξ is the coupling constant between two adjacent resonators;
σ+ = |e〉〈g| = (σ−)† is the raising operator of the atom, with
|e〉 and |g〉 being the excited and ground states of the atom,
respectively; J is the coupling constant between the atom and
the zeroth cavity; n is the total number of cavities; and jM =
(n − 1)/2. In this paper, we assume h̄ = 1 for simplicity.

Assuming a periodical boundary condition, by
Fourier transformation, i.e., a†

j = ∑
k a†

keik j/
√

n, the total

Hamiltonian (1) can be rewritten as

H =
∑

k

ωka†
kak + �|e〉〈e| +

∑
k

Jk (a†
kσ− + H.c.), (4)

where ωk = ω0 − 2ξ cos(k) and Jk = J/
√

n. Since the total
excitation N = ∑

k a†
kak + |e〉〈e| is conserved, i.e., [H,N ] =

0, we assume that at time t the system is in the state |ψ (t )〉 =
α(t )|v, e〉 + ∑

k βk (t )a†
k |v, g〉, with |v〉 being the vacuum state

of all the cavities. According to the Schrödinger equation, we
have

iα̇ = �α +
∑

k

Jkβk, (5)

iβ̇k = ωkβk + Jkα, (6)

where the initial condition is given as α(0) = 1, βk (0) = 0.
As shown in Appendix A, we can obtain the analytic expres-
sion of the probability amplitude of the excited state of the
atom as

α(t ) = A1ep1t + A2ep2t +
∫ 2ξ

−2ξ

C(x)ei(x−ω0 )t dx, (7)

where Aj ( j = 1, 2) are real and pj ( j = 1, 2) are imaginary,
The explicit expressions for all these parameters, including
C(x), can be found in Appendix A. Since the last term in
Eq. (7) decays exponentially in the long-time limit, the prob-
ability of the excited state of the atom reads

Pe = |α(∞)|2 = A2
1 + A2

2 + 2A1A2 cos(φt ), (8)

where φ = ip2 − ip1. In order to measure the atomic tran-
sition frequency precisely, the variance is determined by the
quantum Fisher information F (�) as [28,57,58]

δ�2 = 1

(T/t )F (�)
, (9)

F (�) ≡ 1

Pe(1 − Pe)

(
∂Pe

∂�

)2

, (10)

where T is the total duration of the experiment which is
separated into different repetitions of duration t . Using the
perturbation theory, as shown in Appendix B, we have

φ = 4ξ + (ω0 − �)2 + 4ξ 2

2ξ [(ω0 − �)2 − 4ξ 2]2
J4. (11)

By inserting Eqs. (8), (10), and (11) into Eq. (9), we can obtain
the uncertainty of the atomic transition frequency as

δ�2 = tξ 2B1B2

J8T B3
, (12)

where

B1 = − J8

4�6−ξ 2
− J8

4�6+ξ 2
+ J8 cos(φt )

2�3−�3+ξ 2
+ 1, (13)

B2 = 1

�6−
+ 1

(�+)6
− 2 cos(φt )

�3−�3+
, (14)

B1/2
3 = J4t (� − ω0)(12ξ 2 + (� − ω0)2) sin(φt )

ξ�6−�6+

− 3

�7−
− 3

�7+
+ 3 cos(φt )

�4−�3+
+ 3 cos(φt )

�3−�4+
, (15)

with �± = ±2ξ + ω0 − �.
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FIG. 2. The population dynamics Pe(t ) of an atomic excited state
with small N , e.g., N = 3 (blue dashed line) and N = 4 (red solid
line). Here, the parameters used in the calculation are ω0 = 10ξ , � =
11ξ , and J = 1.3ξ .

III. NUMERICAL SIMULATION AND DISCUSSION

As shown in Appendix C, we utilize N qubits to effectively
simulate the quantum dynamics for one atom interacting with
2N − 1 coupled resonators in the single-excitation subspace.
Figure 2 shows that when the number of qubits N is relatively
small, e.g., N = 3, 4, the population of the atom in the excited
state Pe(t ) does not oscillate with a specific frequency and thus
does not provide any information about the frequency of the
atom. However, if N is increased, e.g., N = 6, 7 in Fig. 3,
we find that there are persistent oscillations in Pe(t ), which
indicates that a bound state in the atom interacting with the
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FIG. 3. The population dynamics Pe(t ) of an atomic excited state
with larger N , e.g., N = 6 (blue dashed line) and N = 7 (red solid
line). The inset compares the numerical simulation of the regular
oscillations of the population dynamics Pe(t ) with N = 8 (red stars)
vs the analytical solution (blue solid line) for Eq. (8) over a period of
time. Here, the parameters are the same as in Fig. 2.
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FIG. 4. The duration of the regular oscillations as a function of
the number of qubits N . We use the function ln(ξT ) = 0.72823N −
1.0812 (red solid line) to fit the data (blue dots) with the linear
correlation coefficient r = 0.99967. The other parameters are the
same as in Fig. 2.

cavity array exists. The underlying physical mechanism can
be explained well by the analytical solution obtained in the
previous section; note that the analytical solution we obtained
in the previous section was obtained under the assumption of
infinite N . At the beginning, due to the third term in Eq. (7),
Pe(t ) oscillates out of order. As time passes, since the con-
tribution from the branch cut vanishes, Pe(t ) oscillates with
a specific frequency, as predicted by Eq. (8). In the inset of
Fig. 3, the numerical simulation and fitting results for Eq. (8)
are compared. The results in Fig. 3 show that when N is
large enough, e.g., N = 5, the population of the excited state
of the atom will show a regular oscillation for a period of
time. The frequency, the amplitude, and the mean of these
regular oscillations are, respectively, φ, 2A1A2, and A2

1 + A2
2

in Eq. (8). According to Eq. (11), φ is proportional to J4. In
contrast to φ vs J , the relation between φ and ξ is trickier. For
a given J , a minimum φ as ξ varies exists. As J decreases, the
minimum also decreases, and the position of the minimum
along the ξ axis approaches closer and closer to the J axis.
A2

1 + A2
2 is insensitive to the variation of ξ and J except when

the atom is strongly coupled to the cavity and the cavities
are weakly coupled to each other. In this regime, A2

1 + A2
2

increases sharply as J grows or ξ decreases. The same behav-
ior can also be observed in the relation between 2A1A2 and J
+ ξ . By measuring this frequency of regular oscillations, we
effectively obtain the atomic transition frequency. Notice that
these regular oscillations do not last forever. Interestingly, the
duration of these regular oscillations seems to get longer as N
increases.

In order to study the relation between the duration of regu-
lar oscillations T and the number of qubits N , we plot ln(ξT )
vs N in Fig. 4. By a linear fit with the linear correlation coeffi-
cient r = 0.99, we show that ξT = exp(0.72823N − 1.0812),
which implies that the duration of the regular oscillations dou-
bles if we use one more qubit, i.e., exp(0.72823) � 2.0714.
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FIG. 5. Fourier transform for the regular oscillations with differ-
ent qubit numbers. The FWHMs of the main peak are, respectively,
0.288ξ, 0.135ξ , and 0.082ξ for N = 6 (blue dotted line), N = 7 (red
dashed line), and N = 8 (green solid line). The other parameters are
the same as in Fig. 2.

Thus, we can tune the coding time by varying the number of
cavities in the array. This allows us to improve the measure-
ment accuracy to obtain the atomic transition frequency with
a much smaller error. When N approaches infinity, the coding
time can be infinite, and we can obtain a perfect measurement
of the atomic transition frequency [see Eq. (9)]. To study
their other properties, we perform the Fourier transform on
the regular oscillations, as shown in Fig. 5. There is a clear
main peak at 4.42ξ . We can see that as the number of qubits N
increases, the height of the main peak is significantly enlarged,
and its full width at half maximum (FWHM) is reduced.
This implies that the regular oscillations become more regular
when N approaches infinity. We also notice that in addition
to the main peak, there is a much smaller peak at 0.35ξ .
This suggests that the bound state is made up of an atomic
excitation and photons in a few cavities. In Fig. 6, we show
both the amplitude and mean of the regular oscillations. As the
number of qubits N increases, both the amplitude and mean
of the regular oscillations approach the ones with infinite N
obtained with the analytical solution given in Eq. (8). The
results shown in Figs. 5 and 6 suggest that the greater the
number of qubits the system is composed of, the more stable
the bound state appears, and thus, the smaller the error that
we obtain when we measure the transition frequency of the
atom is. As shown in Figs. 7 and 8 below, we apply both the
analytical and numerical methods to confirm our conjecture
that bound states can help us improve the accuracy of the
measurements.

In Fig. 7, by the red solid line, we show the uncertainty
of the atomic transition frequency δ� obtained with Eq. (12)
when the atomic transition frequency is within the band of
the coupled resonators. At first, δ� experiences a rapid rise,
followed by a slow decay, guaranteeing the recovery of the
vanishing measurement error. Note that in obtaining Eq. (12)
we assume that the atom-resonator coupling J is weak, i.e.,
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FIG. 6. (a) The amplitude of the regular oscillations for different
numbers of qubits N obtained with the numerical simulation (blue
dots) is compared to the one with infinite N obtained with the
analytical solution (blue solid line). (b) The mean of the regular
oscillations for different numbers of qubits N obtained with the
numerical simulation (red dots) is compared to the one with infinite
N obtained with the analytical solution (red solid line). The other
parameters are the same as in Fig. 2.

|ω0 ± 2ξ |,� � J , and the atomic transition frequency is
within the band of the coupled resonators, i.e., � ∈ [ω0 −
2ξ, ω0 + 2ξ ]. In order to verify that the above assumption is
valid, we compare the approximated Eq. (12) with numeri-

FIG. 7. Comparison of analytical and numerical results for the
uncertainty δ� vs time. The red solid line is obtained with Eq. (12),
while the blue stars are obtained with the numerically exact solution
with the following parameters: N = 8, ω0 = 20ξ, � = 20.5ξ , and
J = 3ξ . With the selection of N , the regular oscillations for the
probability of the atomic excited state stop at ξT = 120.
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FIG. 8. The scaling of the uncertainty δ� vs time. The blue
dots are obtained with the numerical solution with the following
parameters: N = 8, ω0 = 20ξ , � = 20ξ , and J = 0.3ξ . The red solid
line is obtained by fitting the data with the function ln(δ�/ξ ) =
0.97196 × ln(1/ξ t ) + 7.9211 and the linear correlation coefficient
r = 0.9995.

cally exact Eq. (9) in Fig. 7. Obviously, the two solutions
agree very well with each other, which suggests reliable ap-
proximations were made in Eq. (12). In noiseless metrology,
the standard deviation of the measured transition frequency
scales as t−1 with respect to the time. In Fig. 8, we investigate
the standard deviation at the optimal measurement times. By
linear fitting, we numerically demonstrate that δ� ∝ t−1 up
to ξT = 120, which is the duration of the regular oscillations.
However, due to the limitation of the approximations of the
analytical method, we cannot effectively simulate the situation
with an atomic transition frequency beyond the band using
Eq. (12). In Fig. 9, we plot the dynamics of the measured
atomic transition frequency using Eq. (9) with the parameters
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FIG. 9. Numerical simulation of the uncertainty δ� vs time with
the measured atomic transition frequency � beyond the band of the
coupled resonators. The data are obtained with Eq. (9) with the
following parameters: N = 8, � = 17ξ , ω0 = 10ξ , J = 0.3ξ , and
ξT = 120.

N = 8, � = 17ξ , ω0 = 10ξ , J = 0.3ξ , and ξT = 120. As
shown, after an increase of about ξ t = 50, δ� achieves a
steady state, although oscillations with small amplitude still
exist. It does not recover the 1/t measurement because the
bound state does not exist.

IV. CONCLUSION

To conclude, we studied the effects of the bound state
on quantum metrology in an atom interacting with coupled
resonators. In a hybrid system with a finite number n of
cavities, we found that when the number of qubits is large
enough, e.g., n � 25 − 1 = 31, regular oscillations in the pop-
ulation dynamics of the atomic excited state, which may be
used to evaluate the atomic transition frequency, exist. The
duration of these regular oscillations is linear with respect to
n. For a given n, we showed that during the duration of the
regular oscillations, the standard deviation of the measured
atomic transition frequency is inversely proportional to t . If
more cavities are involved, since the duration of the regular
oscillations gets longer, the measured atomic transition fre-
quency will become more and more accurate. These regular
oscillations indicate that a bound state exists in the hybrid
system. Their duration lasts for a finite time because there
are finite cavities, i.e., finite bath modes. Using numerical
simulations, we proved that the bound state exists when the
atomic transition frequency is within the energy band of the
coupled resonators. In addition to the numerical simulations,
we obtained an analytical result for the uncertainty of the
atomic transition frequency for small atom-cavity interaction
strength when the bound state is present. It indicates that the
error-free measurement is recovered with infinite cavities in
the long-time limit due to the existence of the bound state. The
results suggest that the non-Markovian effects and the bound
state account for the high accuracy of quantum metrology. Our
research may shed light on the design of the hybrid system for
exploring the bound state for quantum metrology.
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APPENDIX A: POPULATION OF THE ATOMIC
EXCITED STATE

After the Fourier transformation, the total Hamiltonian
reads [59]

H=
∑

k

ωka†
kak + �|e〉〈e| +

∑
k

Jka†
kσ− + H.c. (A1)
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In the subspace of a single excitation, we assume the wave
function is

|ψ〉 = α(t )|0, e〉 +
∑

k

βk (t )|k, g〉. (A2)

By inserting Eqs. (A2) and (A1) into the Schrödinger equa-
tion, we can obtain

iα̇(t ) = �α(t ) +
∑

k

Jkβk (t ), (A3)

iβ̇k (t ) = ωkβk (t ) + Jkα(t ), (A4)

where α(0) = 1 and βk (0) = 0 are the initial conditions of the
system. Then, we perform the Laplace transform on Eqs. (A3)
and (A4) and get

i[ p̃α(p) − 1] = �α̃(p) +
∑

k

Jkβ̃k (p), (A5)

i p̃βk (p) = ωkβ̃k (p) + Jkα̃(p). (A6)

After some algebra, we can calculate the probability ampli-
tude of the excited state in p space as

α̃(p) = 1

p+i�+∑
k

J2
k

p+iωk

. (A7)

After the inverse Laplace transformation, we can obtain the
probability amplitude of the excited state in the time domain
as

α(t ) = 1

2π i

∫ σ+i∞

σ−i∞
d p̃α(p)ept . (A8)

Using the residual theorem, we have

α(t ) = − 1

2π i

( ∫
CR

α̃(p)ept +
∫

l1

α̃(p)ept +
∫

l2

α̃(p)ept

)

+
2∑

j=1

res[̃α(p j )e
pjt ], (A9)

where CR is a large semicircle at infinity and p j and l j ( j =
1, 2) are, respectively, the two singularities and two branch
lines, which are given by

p + i� +
∑

k

J2
k

p + iωk
= 0. (A10)

According to Eq. (A10), the branch lines are defined by
p + iωk = 0, i.e., p ∈ [ipm, ipM], where pm = −ω0 − 2ξ and
pM = −ω0 + 2ξ . Note that∑

k

J2
k

p + iωk
= J2

2πξ

∮
|z|=1

dz
1

z2 + Mz + 1
, (A11)

where M = (ip − ω0)/ξ and z± = (−M ± √
M2 − 4)/2

are the two singularities. In other words, p /∈ [−i(ω0 +
2ξ ),−i(ω0 − 2ξ )], i.e., M > 2 or M < −2. In the former
case, since ip > ω0 + 2ξ and −1 < z+ < 0, z− < −1, we
have

J2

2πξ

∮
|z|=1

dz
1

z2 + Mz + 1
= iJ2

ξ
√
M2 − 4

. (A12)

By substituting Eq. (A12) into Eq. (A10), we can obtain

p + i� + i
J2

ξ
√
M2 − 4

= f1(p). (A13)

With f1(p1) = 0 and ip1 > ω0 + 2ξ , we attain the first singu-
larity. In the same way, for the case of M < −2, since

J2

2πξ

∮
|z|=1

dz

z2 + Mz + 1
= − iJ2

ξ
√
M2 − 4

, (A14)

we have

p + i� − i
J2

ξ
√
M2 − 4

= f2(p). (A15)

With f2(p2) = 0 and ip2 < ω0 − 2ξ , we can obtain the second
singularity. As a result, the contribution from the singularities
in Eq. (A9) reads

res(̃α(pj )e
pjt ) = Aje

pjt , (A16)

where Aj = ( df j

d p |p j )
−1.

Thanks to Jordan’s lemma, we know
∫

CR
α̃(p)ept = 0.

Thus, we have

− 1

2π i

( ∫
l1

α̃(p)ept +
∫

l2

α̃(p)ept d p

)

= − 1

2π i

(∫ pM

pm

eipt

p + � − ∑
k

g2
k

p+ωk+i0+

d p

+
∫ pm

pM

eipt

p + � − ∑
k

J2
k

p+ωk−i0+

d p

)
. (A17)

Here,∑
k

J2
k

p + iωk ± i0+ = J2

2π

[
∓ i2π√

4ξ 2 − (ω0 + p)2

+
∫ π

−π

dkP

(
1

p + ωk

)]
, (A18)

where P(x) is the principal-value function. Since∫ π

−π

dkP

(
1

p + ωk

)
= 0, (A19)

by inserting Eq. (A18) into Eq. (A17), we have

− 1

2π i

(∫
l1

α̃(p)ept +
∫

l2

α̃(p)ept d p

)
=

∫ 2ξ

−2ξ

C(x)ei(x−ω0 )t dx,

(A20)

where C(x) = (g2
√

4ξ 2 − x2)/{(� − ω0 + x)2[4ξ 2 − (x)2] +
g4}. Finally, we obtain the probability amplitude of the atomic
excited state as

α(t )=A1ep1t + A2ep2t +
∫ 2ξ

−2ξ

C(x)ei(x−ω0 )t dx, (A21)

where

Aj = (ip j − ω0)2 − 4ξ 2

(ip j − ω0)2 − 4ξ 2 + (ip j − �)(ip j − ω0)
. (A22)
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After some algebra, we find that p j ( j = 1, 2) are pure imagi-
nary numbers.

APPENDIX B: UNCERTAINTY BY PERTURBATION

In order to obtain the uncertainty of �, we first determine
p1 and p2 in Eq. (A21) using perturbation theory. Take advan-
tage of Eqs. (A13) and (A15), we have

(ip − �)2[(ip − ω0)2 − 4ξ 2] = J4. (B1)

By the perturbation theory, to the zeroth order of J4, we can
obtain

(x − �)2[(x − ω0)2 − 4ξ 2] = 0, (B2)

where x = ip. There are three solutions to the above equation,
i.e.,

x01 = ω0 + 2ξ, (B3)

x02 = ω0 − 2ξ, (B4)

x03 = x04 = �. (B5)

In the following, we obtain the solutions to Eq. (B1) to the
first order of J4.

As shown in Appendix A, ip1 > 2ξ + ω0, and ip2 <

−2ξ + ω0; only x1 and x2 are retained for the following dis-
cussion. To the first order of J4, we assume x j = x0 j + CjJ4

( j = 1, 2, 3, 4). Inserting them back into Eq. (B1), we can
obtain

(x − �)2(x − x01)(x − x02) = J4. (B6)

Thus, we have

C1 = 1

4ξ�2+
, (B7)

C2 = −1

4ξ�2−
, (B8)

where �± = ±2ξ + ω0 − �. In all, p1 = −ix1, and p2 =
−ix2.

Now that we know the analytical expressions of p j , in the
long-time limit, the population of the atom in the excited state
reads

Pe = |α(∞)|2 = A2
1 + A2

2 + 2A1A2 cos(φt ), (B9)

where φ = x1 − x2; the contribution from the integral term
in Eq. (A21) vanishes when the time is large enough. By
inserting p1 and p2 into Eq. (A22), we have

A1 = J4

2�3+ξ
, (B10)

A2 = − J4

2�3−ξ
, (B11)

φ = 4ξ + (C1 − C2)J4. (B12)

The uncertainty of the atomic transition frequency is writ-
ten as

δ�2 = 1

(T/t )F (�)
, (B13)

where the Fisher information F (�) is

F (�) ≡ 1

Pe(1 − Pe)

(
∂Pe

∂�

)2

. (B14)

According to Eqs. (B13), (B14), and (B9), the uncertainty is
explicitly given as

δ�2 = tξ 2B1B2

J8T B3
, (B15)

where

B1 = − J8

4�6−ξ 2
− J8

4�6+ξ 2
+ J8 cos(φt )

2�3−�3+ξ 2
+ 1, (B16)

B2 = 1

�6−
+ 1

(�+)6
− 2 cos(φt )

�3−�3+
, (B17)

B1/2
3 = J4t (� − ω0)[12ξ 2 + (� − ω0)2] sin(φt )

ξ�6−�6+

− 3

�7−
− 3

�7+
+ 3 cos(φt )

�4−�3+
+ 3 cos(φt )

�3−�4+
. (B18)

APPENDIX C: DIRECT MAPPING

In this section, we discuss how to demonstrate the bound-
state enhanced metrology using the quantum simulation
approach with a finite number of qubits. We focus our inves-
tigation on the single-excitation subspace. If we use N qubits
for quantum simulation, the dimension of the Hilbert space
is 2N . For example, when N = 2, we perform the following
mapping before carrying out the quantum simulation:

|00〉 = |0〉|e〉, (C1)

|01〉 = a†
1|0〉|g〉, (C2)

|10〉 = a†
2|0〉|g〉, (C3)

|11〉 = a†
3|0〉|g〉, (C4)

where |g〉 (|e〉) is the atomic ground (excited) state, |0〉 is the
vacuum state of all cavities, and a†

j |0〉 indicates that there
is one photon in the jth cavity while all other cavities are
in the vacuum state. Therefore, by using N qubits, we can
effectively simulate the quantum dynamics of one atom plus
2N − 1 coupled cavities.
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