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The nonadiabatic holonomic quantum computation based on the geometric
phase is robust against the built-in noise and decoherence. In this work, we
theoretically propose a scheme to realize nonadiabatic holonomic quantum
gates in a surface electron system, which is a promising two-dimensional
platform for quantum computation. The holonomic gate is realized by a
three-level structure that combines the Rydberg states and spin states via an
inhomogeneous magnetic field. After a cyclic evolution, the computation bases
pick up different geometric phases and thus perform a holonomic gate. Only the
electron with spin up experiences the holonomic gate, while the electron with
spin down is decoupled from the state-selective driving fields. The arbitrary
controlled-U gate encoded on the Rydberg states and spin states can then be
realized. The fidelity of the output state exceeds 0.99 with experimentally
achievable parameters.
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1 Introduction

The quantum geometric phase is a very important resource for quantum computation
[1–5]. Quantum gates based on the geometric phase are robust against the disturbance of
the dynamic process owing to their global geometric properties [6]. The adiabatic
holonomic quantum computation (AHQC) realizes high-fidelity quantum gates via the
geometric phase in an adiabatic evolution [7–15]. The AHQC protocol is solely determined
by the solid angle of the cyclic evolution in the parameter space, and thus is robust against
small perturbations of the evolution path. However, the adiabatic condition [16] of AHQC
requires a long evolution time, which accumulates considerable decoherence. Thus, the
nonadiabatic holonomic quantum computation (NHQC) was proposed [17–28]. The
NHQC preserves the computational universality of the AHQC but does not require the
adiabatic condition, and thus has attracted broad interest in recent years [29–45].

On the other hand, the electron on the surface of liquid helium provides a controllable two-
dimensional (2D) quantum system, where the surface electron (SE) is attracted by the induced
image charge inside the liquid helium and concurrently repulsed by the helium atoms. The
confinement perpendicular to the surface leads to a hydrogen-like spectrum which can be used
in quantum simulation [46, 47] and quantum information tasks [48, 49].Meanwhile, themotion
parallel to the surface is free of defects and impurities, thus the SE forms a perfect 2D electron
system which is widely observed in semiconductor devices [50]. The SE can be manipulated by
the circuit QED architecture [51, 52] or the microchannel devices [53–59] with high transport
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efficiency [60, 61]. With a static magnetic field perpendicular to the
surface, the motion parallel to the surface is quantized as orbital states
[62], which is similar to the Landau levels. In addition, the spin state of
the SE is also an important quantum resource owing to its long
relaxation time that exceeds 100 s [63]. Both the Rydberg and
orbital states can be coupled to the spin states of electrons [64, 65].
Recent works [66, 67] show a practical method to couple the Rydberg
state with the spin state using a local inhomogeneous magnetic field,
where the electrons with different expected positions experience
different magnetic fields depending on their Rydberg state. The
Rydberg states of SE can probably realize large-scale quantum
computation owing to the long-range dipole-dipole interaction of
adjacent electrons [67], while the spin states may be valuable for
quantum memory because of their long lifetime.

In the past, research on the SE hasmainly focused on exploring the
physical properties, while the efficient quantum gates based on the SE
still require further investigation. Therefore, in this work, we propose a
scheme to realize the nonadiabatic holonomic gates on both the spin
states and Rydberg states of a single SE. We first propose an arbitrary
single-qubit holonomic gate on the Rydberg state of the SE, which is
realized by a three-level structure driven by time-dependent microwave
pulses. During the cyclic evolution, two orthogonal bases pick up
different geometric phases. The universal single-qubit holonomic
gate is realized by varying the complex ratio between the Rabi
frequencies of the two driving fields. Then we introduce an
inhomogeneous magnetic field through a magnetized ferromagnetic
electrode. The Rydberg states with different expected positions
experience different magnetic fields, and thus their Zeeman energy
splittings are different. By applying the state-selective pulses, three
Rydberg states with spin up are coupled with the driving fields,
while the Rydberg states with spin down are decoupled. An
arbitrary holonomic single-qubit gate U is applied on the three
coupled states, while the three decoupled states remain unchanged.
In this way, the holonomic controlled-U gate of the Rydberg and spin
states is achieved. Owing to the global geometric properties, the NHQC
gates are not sensitive to the fluctuation of the pulse duration. Because
the adiabatic condition is not required during the evolution, the fast
manipulation makes the scheme robust against dissipation. Our
theoretical scheme is based on the experimental configuration, and
the parameters are experimentally achievable.

This paper is organized as follows. In Section 2, we introduce the
basic model of the SE in the external magnetic and electric fields and
the method to realize holonomic gates. In Section 3, we present the
fidelity of the scheme. Finally, we conclude the work and give a
prospect in Section 4.

2 Model and methods

2.1 Basic model of the surface electron

Our theoretical proposal is based on the electron above liquid
helium. The electron is trapped by the external electric field provided
by electrodes [67]. As shown in Figure 1, a pillar electrode with
positive voltage and an annular electrode with negative voltage are
embedded in the liquid helium. These electrodes apply an electric
holding field with the cylindrically symmetric electric potential V(r,
z), where z is the vertical coordinate and r � ������

x2 + y2
√

is the radial
coordinate. Meanwhile, the electron is confined by the image
potential −Λe2/z introduced by the image charge in the liquid
helium, where e is the charge of the electron and Λ = (ϵ − 1)/
[4(ϵ + 1)] with the dielectric constant ϵ ≈ 1.057. The vertical motion
of the SE is quantized as the Rydberg states. On the other hand, a
uniform static magnetic field B0 = B0ez is perpendicularly applied to
the surface. Because the total potential −Λe2/z − eV(r, z) is
cylindrically symmetric, we introduce the symmetric gauge A =
B0 ×r/2. The motion of the electron is determined by the
Hamiltonian

HT � p + eA( )2
2me

− Λe2
z

− eV r, z( )
� H0 + 1

2
ωcLz,

(1)

FIGURE 1
(A) The longitudinal section of the proposed model. A central
pillar electrode (orange) with a positive voltage of 60 mV and an
annular electrode (dark gray) with a negative voltage of −45 mV are
embedded in the liquid helium. The SE floats above the liquid
surface. The vertical motion of the SE is quantized as the Rydberg
states owing to the image potential and the electric field applied by the
electrodes. A uniform static magnetic field B0 is perpendicularly
applied to the surface. The center electrode is made of ferromagnetic
material and induces an inhomogeneous magnetic field. The total
magnetic field is B. The motion in the xOy plane is quantized as the
Landau level induced by the vertical magnetic field and the
cylindrically symmetric electric potential. (B) The top view of the
architecture. The electrodes are arranged in an array, with one
electron in each unit. Because the energy levels of each electron can
be independently tuned by the voltage of electrodes, the driving field
can be resonant with only one electron at a time. The adjacent
electrons can be coupled by the dipole-dipole interaction of the
Rydberg states. (C) The quantum information can be stored in the spin
states and manipulated in large-scaled quantum computation via the
Rydberg states.
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where ωc = eB0/me is the cyclotron frequency, me is the mass of the
electron, and Lz is the angular momentum along z-direction, i.e.,

Lz � xpy − ypx � −iZ x
∂

∂y
− y

∂

∂x
( ) � −iZ ∂

∂ϕ
, (2)

where pα and α are the momentum and position of the electron (α =
x, y, z), and ϕ is the azimuthal coordinate in the xOy-plane. The
vertical and radial motion of the electron is determined by

H0 � 1
2me

p2
x + p2

y + p2
z( ) + 1

8
meω

2
c x2 + y2( ) − Λe2

z
− eV r, z( )

� − Z2

2me

∂2

∂r2
+ 1
r

∂

∂r
− m2

r2
+ ∂2

∂z2
( ) + 1

8
meω

2
cr

2 − Λe2
z

− eV r, z( ),
(3)

where m is an integer. Because of the cylindrical symmetry, the
wavefunction can be expressed as

Ψ z, r, ϕ( ) � ψnz,nr,m
z, r( )Φ ϕ( ), (4)

where ψnz,nr,m
(z, r) is the wavefunction of H0 with the vertical

quantum number nz, the radial quantum number nr, and the
angular quantum number m. Φ(ϕ) = eimϕ is the azimuthal
wavefunction that satisfies LzΦ(ϕ) = mZΦ(ϕ).

The vertical motion of the SE is quantized by the Rydberg state
labeled by nz. The expected positions of the lowest three states along
the z direction are 7.63 nm, 17.2 nm, and 25.3 nm, which are derived
from the numerical solution of the wavefunction, cf. the
Supplementary Material. An inhomogeneous magnetic field is
induced by the center electrode which is made of ferromagnetic
material. The electrons with different nz have different expected
positions 〈z〉, and thus experience different magnetic fields. The
differences of the magnetic field ΔB at the expected positions with
nz = 1, 2, 3 are on the order of several mT. The corresponding
difference of the Zeeman energy gμBΔB/h is about hundreds of GHz,
where g is the Lande g factor and μB = eZ/(2me) is the Bohr
magneton. This energy difference is much larger than the decay
rates of the Rydberg states, cf. the Supplementary Material, and plays
a significant role in the following controlled-U gate scheme.

2.2 Nonadiabatic holonomic quantum gates
based on the Rydberg states and spin states

At first, we will demonstrate the proposal to realize a single-
qubit gate in the subspace of a specific spin state, that is, the subspace
spanned by {|↑, nz〉} (nz = 1, 2, 3). As we have mentioned in Section
2.1, the Rydberg states with larger quantum number nz are further
away from the liquid surface, and thus experience different magnetic
fields. Since the Zeeman energy of the spin state is determined by the
inhomogeneous magnetic field, the Zeeman energies of different
Rydberg states are different. The magnetic field experienced by state
|nz〉 is B(nz)

z . The Zeeman-energy splitting between |↑, nz〉 and |↓, nz〉
is gμBB

(nz)
z , where ↑ and ↓ represent the spin-up and spin-down

states, respectively. As shown in Figure 2A, if we label the transition
frequency of |↑, nz〉 5|↑, 3〉 as ωnz3 (nz = 1, 2), then the transition
frequency of |↓, nz〉 5|↓, 3〉 is ωnz3 + δnz3, with
δnz3 � gμB[B(nz)

z − B(3)
z ]. The inhomogeneous magnetic field along

the normal direction in the range of 0 ~ 20 nm is approximately
linear, and the gradient is approximately 0.4 mT/nm [67]. The
detunings are δ13/2π ≈ 190 MHz and δ23/2π ≈ 90 MHz.
Therefore, by applying two state-selective driving fields with
frequency ωnz3, the three Rydberg states with spin up form a Λ-
type three-level structure, while the Rydberg states with spin down
are decoupled. The driving pulses are controlled by an arbitrary-
waveform generator. The Rabi frequencies of |↑, 1〉5|↑, 3〉 and |↑,
2〉5|↑, 3〉 are respectivelyΩ1(t) andΩ2(t). The ratio betweenΩ1(t)
and Ω2(t) is a constant, i.e., Ω1(t) = Ω(t) sin(θ/2)eiφ and
Ω2(t) = −Ω(t) cos(θ/2) with Ω(t) �

������������
Ω2

1(t) +Ω2
2(t)

√
. The

interaction Hamiltonian reads

HI t( ) � Ω t( ) sin
θ

2
eiφ|↑, 3〉〈↑, 1| − cos

θ

2
|↑, 3〉〈↑, 2| +H.c.( ). (5)

Hereafter, we assume Z = 1 for simplicity. Ω(t) represents the shape
of the driving pulse. The duration of the driving pulse can be very
short because the adiabatic condition is not required during the
evolution. A specific pulse shape is not strictly required for NHQC,
but the integral over time needs to be π, i.e., ∫∞

−∞ Ω(t)dt � π, which
will be explained later.

The eigenenergies of HI are 0, ± Ω. The corresponding
eigenstates are

FIGURE 2
(A) Schematic diagram of the nonadiabatic holonomic gate. Two
driving pulses are resonant with |↑, nz = 1〉5|↑, nz = 3〉 and |↑, nz = 2〉
5|↑, nz= 3〉, respectively. The driving pulses are off-resonant with the
transition frequencies of the spin-down states due to the large
detuning δ13 and δ23. (B) The evolutions of the instantaneous
orthogonal bases |D(t)〉 and |B(t)〉 on the Bloch spheres. The dark state
|D(t)〉 remains unchanged, while |B(t)〉 evolves along the longitude
circle and acquires a geometric phase.
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|ψ0〉 � |d〉, (6)
|ψ+〉 � 1�

2
√ |b〉 + |a〉( ), (7)

|ψ−〉 � 1�
2

√ |b〉 − |a〉( ), (8)

Where |d〉 ≡ cos(θ/2)|↑, 1〉 + sin(θ/2)eiφ|↑, 2〉 is the dark state, |b〉 ≡
sin(θ/2)e−iφ|↑, 1〉 − cos(θ/2)|↑, 2〉 is the bright state, and |a〉 = |↑, 3〉
is the intermediate state. The dark state does not evolve with time
because the corresponding eigenenergy is zero. Thus, we define

|D t( )〉 ≡ U1 t( )|d〉 � |d〉, (9)
where

U1 t( ) � T exp i∫t

0
HI t′( )dt′[ ], (10)

is the evolution operator of HI, and T represents the time-ordered
integration. We also define

|B t( )〉 ≡ eiα t( )U1 t( )|b〉
� eiα t( ) cos α t( )|b〉 − i sin α t( )|a〉[ ], (11)

where α(t) � ∫t

0
Ω(t′)dt′. Here we introduce a global phase eiα(t) to

ensure a cyclic evolution of |B(t)〉 when α = π at the final time. The
evolutions of |D(t)〉 and |B(t)〉 are shown in Figure 2B. The state
|D(t)〉 is unchanged, while the state |B(t)〉 evolves along the
longitude line of the Bloch sphere with bases {|b〉, |a〉} and
induces a geometric phase. To make use of the geometric phase,
we introduce the following instantaneous orthogonal bases,

|ξ1 t( )〉 ≡ sin
θ

2
eiφ|B t( )〉 + cos

θ

2
|D t( )〉, (12)

|ξ2 t( )〉 ≡ − cos
θ

2
|B t( )〉 + sin

θ

2
e−iφ|D t( )〉. (13)

By choosing α(τ) = π at the final time τ, |ξ1(τ)〉 = |ξ1(0)〉 = |↑, 1〉 and
|ξ2(τ)〉 = |ξ2(0)〉 = |↑, 2〉, i.e., |ξ1(t)〉 and |ξ2(t)〉 coincide with the
computation bases |↑, 1〉 and |↑, 2〉 both at the beginning and end of
time. It can be easily verified that the parallel transport condition
〈ξ1(t)|HI(t)|ξ2(t)〉 = 0 is satisfied during the whole evolution t ∈ [0,
τ]. Thus, the dynamic phases vanish and the evolution operatorU(τ)
in the subspace spanned by |↑, 1〉 and |↑, 2〉 is [19, 29]

U τ( ) � T exp i∫τ

0
A t( )dt[ ]

� cos θ e−iφ sin θ
eiφ sin θ −cos θ( )

� n · σ,
(14)

where n = (sin θ cosφ, sin θ sinφ, cos θ), σ = (σx, σy, σz) are the Pauli
operators, and the connection matrix A is

A � − _α
sin2θ

2
−sin θ

2
cos

θ

2
e−iφ

−sin θ

2
cos

θ

2
eiφ cos2

θ

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (15)

whose matrix elements are determined by

Aij � 〈ξ i t( )|i∂t|ξj t( )〉. (16)

Therefore, a single-qubit holonomic gate on the coupled Rydberg
states is realized by adjusting the complex ratio tan(θ/2)eiφ between
the Rabi frequencies of the two driving fields. For example, a

Hadamard gate H is realized by (θ, φ) = (π/4, 0), and a NOT
gate X is realized by (θ, φ) = (π/2, 0). In addition, two sequential
holonomic gates lead to

U m( )U n( ) � n ·m − iσ · n × m( ), (17)
which forms an arbitrary SU(2) transformation that rotates the state
around the axis n ×m by the angle 2 arccos(n ·m) [19, 68]. For
instance, the π/8 phase gate [68] is realized by two sequential gates
with (θ, φ) = (π/2, 0) and (θ, φ) = (π/2, π/8).

Next, we will demonstrate the two-qubit gate proposal by taking
two spin states into account. As shown in Figure 2A, the Rydberg
states with spin down are off-resonant with the driving fields. Thus,
the subspace spanned by {|↓, nz〉} (nz = 1, 2, 3) is decoupled with the
driving fields. The total evolution operator in the subspace spanned
by {|↓, 1〉, |↓, 2〉, |↑, 1〉, |↑, 2〉} is

Utot τ( ) � |↓〉〈↓| ⊗ I + |↑〉〈↑| ⊗ U, (18)
where U is the single-qubit gate on the Rydberg states according to
Eq. 14. In this way, the holonomic controlled-U gate with the spin
state being the control qubit is realized. In addition, according to Eq.
17, by applying two controlled gate sequentially, we can realize an
arbitrary controlled-U gate. For example, by choosing (θ, φ) = (π/2,
0), U = X and a CNOT gate is realized as

Utot τ( ) � |↓〉〈↓| ⊗ I + |↑〉〈↑| ⊗ X, (19)
where I and X are the identity operator and qubit-flip operator in the
subspace spanned by {|nz = 1〉, |nz = 2〉}, respectively. The Rydberg
states flip only if the spin state is |↑〉. Similarly, by choosing (θ, φ) =
(0, 0), U = Z and a controlled phase (CZ) gate is achieved.

In the presence of dissipation, the evolution of the system can be
described by the quantum master equation [69]

∂

∂t
ρ � −i H, ρ[ ] − L ρ( ), (20)

where the Lindblad operator is

L ρ( ) � ∑
m,n

κmn CmnρC
†
mn −

1
2

C†
mnCmn, ρ{ }[ ], (21)

where {A, B} = AB+ BA is the anti-commutator, Cmn = |m〉〈n| is the
collapse operator with the corresponding decay rate κmn. It is
noteworthy that κmn increases with the electric holding field E⊥
induced by the electrodes, cf. the Supplementary Material. For
typical experimental configuration, E⊥ is on the order of 100 ~
1000 V/cm [70]. Hereafter the evolution with dissipation is solved by
QuTiP [71, 72].

3 Results

The state fidelity F between the final state ρ(t) and the ideal
target state ρi is defined as [68]

F � Tr
������������
ρi

√
ρ t( ) ��

ρi
√√

. (22)

In Table 1, we present the fidelity of the CNOT gate with typical
initial states under the influence of dissipation. While in Table 2, we
present the fidelity of the controlled-phase (CZ) gate. The decay
rates are calculated under a typical electric holding field E⊥ = 100 V/
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cm [73]. Because the adiabatic condition is not required during the
evolution, the evolving time can be very short. For the typical
microwave driving with Rabi frequency ΩR/2π = 40 MHz [50,
73], we use the Gaussian driving pulse with the duration T = 2π/
ΩR = 25 ns and the standard deviation σ = T/8. The full width at half
maxima (FWHM) is tFWHM � 2

�����
2 ln 2

√
σ ≈ 0.3T.

It is noteworthy that the CNOT gate can generate an entangled
state from a product state. Thus, we present the time evolution of the
initial product state (|↓〉 + |↑〉) ⊗|1〉/ �

2
√

in Figure 3 and the density
matrix of the final state in Figure 4. The result shows that the initial
state evolves to the maximal-entangled state (|↓, 1〉 + |↑, 2〉)/ �

2
√

with high fidelity. Figure 3 also indicates that the fidelity F > 0.99 as
long as t > 0.67 T. Even if the pulse duration is a little bit longer or
shorter than T, the fidelity of the final state is still very high. Thus,
the NHQC method is not sensitive to the fluctuation of the pulse
duration, which might be commonly observed in experiments.

TABLE 1 The output-state fidelity of the CNOT gate under typical input
states. The decay rates are calculated under a typical electric holding field
E⊥ = 100 V/cm, which are κ21 = 1.95 MHz, κ32 = 0.22 MHz, and κ31 =
1.69 MHz.

Input state Ideal output state Fidelity

|↓, 1〉 |↓, 1〉 1

|↓, 2〉 |↓, 2〉 0.9957

|↑, 1〉 |↑, 2〉 0.9977

|↑, 2〉 |↑, 1〉 0.9977

(|↓〉 + |↑〉) ⊗|1〉/ �
2

√ (|↓, 1〉 + |↑, 2〉)/ �
2

√
0.9988

TABLE 2 The output-state fidelity of the CZ gate under typical input states.
The decay rates are the same as Table 1.

Input state Ideal output state Fidelity

|↓〉⊗ (|1〉 + |2〉)/ �
2

√ |↓〉⊗ (|1〉 + |2〉)/ �
2

√
0.9988

|↓〉⊗ (|1〉 − |2〉)/ �
2

√ |↓〉⊗ (|1〉 − |2〉)/ �
2

√
0.9988

|↑〉⊗ (|1〉 + |2〉)/ �
2

√ |↑〉⊗ (|1〉 − |2〉)/ �
2

√
0.9989

|↑〉⊗ (|1〉 − |2〉)/ �
2

√ |↑〉⊗ (|1〉 + |2〉)/ �
2

√
0.9989

FIGURE 3
Time evolution of the state ρ(t) under the CNOT gate with the
initial state (|↓〉 + |↑〉) ⊗|1〉/ ��

2
√

. F(t) is the fidelity between the ideal
output state and the state ρ(t). The decay rates are the same as Table 1.
The duration T of the Gaussian driving pulse is 25 ns.

FIGURE 4
(A) Real and (B) imaginary part of the density matrix of the output
state from the initial state (|↓〉 + |↑〉) ⊗|1〉/ ��

2
√

. The decay rates are the
same as Table 1.

FIGURE 5
Fidelity of the output state with initial state (|↓〉 + |↑〉) ⊗|1〉/ ��

2
√

in
different electric fields E⊥.
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Generally the electric holding field E⊥ is applied to the
experimental system in order to confine the motion of electrons
and tune the energy spacing between the Rydberg states. E⊥ is on the
order of 100 ~ 1000 V/cm for typical experimental configuration
[70]. Because κmn increases with E⊥, we investigate the fidelity with
initial state (|↓〉 + |↑〉) ⊗|1〉/ �

2
√

under different electric fields, as
shown in Figure 5. The fidelity F is higher than 0.99 for E⊥ < 400 V/
cm, and higher than 0.96 for E⊥ < 1000 V/cm. Therefore, our scheme
is robust against dissipation in experiments.

As for the single-qubit gate, we can apply four resonant drivings
with frequencies being respectively ω13, ω23, ω13 + δ13, and ω23 + δ23,
and simultaneously perform two NHQC gates in the spin up and
spin down subspace, as shown in Figure 6. In this way, a single-qubit
gate on the Rydberg state is performed, i.e.,

Utot � |↓〉〈↓| ⊗ U + |↑〉〈↑| ⊗ U � I ⊗ U, (23)
where U is the single-qubit operation in Eq. 14 and I is the identity
operator. This proposal still works when the driving pulses ω13, ω23

andω13 + δ13,ω23 + δ23 are not applied simultaneously. In Table 3 we
present the average output-state fidelity of the single-qubit NOT
gate and Hadamard gate. The “non-simultaneous case” implies that
the driving pulses with frequencies ω13 + δ13 and ω23 + δ23 are
applied T/4 later than the driving pulses with frequencies ω13 and
ω23. The state fidelity is obtained by the following procedures. We
begin with the initial state ρtoti , which is the product state of the spin
state and the Rydberg state, i.e., ρtoti � ρSi ⊗ ρRi . Then we derive the
final state ρtotf from the evolution determined by the master Eq. 21.

Next, we obtain the reduced density matrix ρRf of the Rydberg state
by taking partial trace on ρtotf , i.e., ρRf � Trspin(ρtotf ). Finally, we
acquire the state fidelity between ρRf and the ideal final state. The
average fidelity in Table 3 is derived by averaging the results of six
input states, with the initial spin state being (|↓〉 + |↑〉)/ �

2
√

and the
initial Rydberg states being |1〉, |2〉, (|1〉 + |2〉)/ �

2
√

, (|1〉 − |2〉)/ �
2

√
,

(|1〉 + i|2〉)/ �
2

√
, and (|1〉 − i|2〉)/ �

2
√

, respectively. The results
indicate that for both the NOT gate and Hadamard gate we can
achieve near-unity fidelity.

4 Conclusion and remarks

In this work, we present a scheme to realize nonadiabatic
holonomic gates in an SE system based on the experimental
configuration [67]. By applying the state-selective pulses, three
Rydberg states with spin up are coupled with driving fields.
During the evolution, two orthogonal bases acquire different
geometric phases and thus perform a geometric gate. By varying
the complex ratio between the Rabi frequencies of the two driving
fields, the universal single-qubit nonadiabatic holonomic quantum
gate is realized. The controlled-U gate on the Rydberg and spin states
is based on the different Zeeman energy splittings in the
inhomogeneous magnetic field. With the state-selective driving
pulses we perform an arbitrary single-qubit gate U on the
Rydberg states with spin up while the Rydberg states with spin
down remain unchanged.

It is noteworthy that we can also realize controlled-U gates
considering the Rydberg states as the control qubit. As shown in
Figure 6, the electron-spin-resonance frequencies of |nz = 1〉 and
|nz = 2〉 are ωZ1 and ωZ2, respectively. Because the magnetic field at
the expected positions of |nz = 1〉 and |nz = 2〉 are different, the
difference between ωZ1 and ωZ2 is δ12 = ωZ1 − ωZ2 = gμB(B

(1) − B(2)).
δ12 is on the order of several hundreds MHz, which is much larger
than the decay rate ~ 1 MHz. Thus, we can resonantly drive the
transition between the two spin states and perform a quantum gate
through the Rabi oscillation when the Rydberg state is |nz = 2〉, while
keep the spin states unchanged when the Rydberg state is |nz = 1〉.

Because of the fast nonadiabatic evolution, the NHQC proposal
is robust against dissipation. Our theoretical scheme is based on the
experimental configuration, and the parameters are experimentally
achievable. Therefore, this work will supply heuristic insight for fast-
manipulation tasks of holonomic quantum computation that
involve both the Rydberg and spin states of the SE.
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