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Topological quantum transition driven by charge-phonon coupling
in higher-order topological insulators
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We investigate a second-order topological quantum transition of a modified Kane-Mele model driven by an
electron-phonon interaction. The results show that the system parameters of the bare modified Kane-Mele model
are renormalized by the electron-phonon interaction. Starting from the second-order topological phase for the
bare model, the increasing electron-phonon coupling strength can drive the second-order topological insulator
into a semimetal phase. Such a second-order topological phase transition is characterized by the band-gap
closing, discontinuity of the averaged ferminoic number, and the topological invariant.

DOI: 10.1103/PhysRevB.107.125118

I. INTRODUCTION

The past five years have witnessed considerable interest
and rapid developments in studying higher-order topologi-
cal insulators (HOTIs) [1–26]. The hallmark of HOTIs is
the existence of topologically protected boundary states with
their dimension at least two lower than the bulk states. Such
unconventional boundary states have been experimentally ob-
served in a variety of platforms, including electrical circuits
[7,27–29], acoustic [13,14,30,31] and photonic waveguides
[32–34], phononic metamaterials [8], and solid-state materials
[16]. Furthermore, the unconventional bulk-boundary corre-
spondence in HOTIs, with the interplay of disorder [35–37],
quasicrystal [19,38,39] and amorphous [40,41] structures,
many-body interactions [42–44], non-Hermiticity [45–47], or
periodic driving [48–54], has led to many intriguing features
uncovered in conventional topological insulators.

Up to now, much effort has been devoted to understanding
the effects of disorders [35–37] and electron-electron inter-
actions [42–44] on the higher-order topological properties. In
contrast, the inevitable roles played by the electron-phonon
interaction in solid-state materials remain mostly unexplored
in HOTIs. Therefore, it is of interest to address this issue.
In conventional first-order topological phases, the electron-
phonon interaction has been proven to modify the topological
properties of an electronic structure, and induce novel topo-
logical phase transitions and robust edge states [55–62]. One
may wonder how an electron-phonon interaction modifies the
topological properties in HOTIs, and whether a higher-order
topological phase occurs by tuning the phononic degrees of
freedom.

In this paper, we aim to reveal the role played by the
electron-phonon coupling of solid-state materials in deter-
mining the higher-order topological phase transitions. To
be specific, we investigate a Holstein model by introducing
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the electron-phonon interaction into the modified Kane-Mele
model [63]. The renormalization of the system parameters
due to the electron-phonon coupling is demonstrated by using
the Lange-Firsov approach [64] in the high-frequency limit of
the optical phonon mode. Then we employ the cluster pertur-
bation theory to calculate the one-electron spectral function
defined via the system’s Green’s function. We compute the
renormalized parameters, band gaps, and energy bands as
the electron-phonon coupling strength varies. The electron-
phonon interaction modifies the system’s parameters, and
therefore the band gap closes at the critical electron-phonon
coupling strength. These indicate that a topological phase
transition occurs. Such a phase transition is further verified by
analyzing the fermionic number discontinuity at the critical
electron-phonon coupling strength. By calculating the topo-
logical invariant, we verify a second-order topological phase
transition driven by the electron-phonon coupling.

The rest of the paper is structured as follows. In Sec. II, we
review the bare modified Kane-Mele model and its topological
phase regimes. In Sec. III, we introduce the Lang-Firsov ap-
proach to predict the renormalized parameters, and utilize the
cluster perturbation theory to calculate the spectral function
and second-order topological phase transitions. The numerical
results are presented in Sec. IV. Finally, we conclude the work
in Sec. V.

II. THE MODEL WITH CHARGE-PHONON COUPLING

In order to uncover the effects of electron-phonon interac-
tions on the higher-order topological properties, we consider
the modified Kane-Mele model [63] for spinful electrons in
the presence of intrinsic spin-orbit coupling and an in-plane
Zeeman field in a honeycomb lattice. Its tight-binding Hamil-
tonian is written as [63]

H0 = −t
∑
〈i j〉

c†
i c j + itso

∑
〈〈i j〉〉

νi jc
†
i szc j + λ

∑
i

c†
i syci, (1)
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FIG. 1. Schematic of the honeycomb lattice structure. νi j = +1
when hopping from j to i in the direction of the arrow, otherwise, it
has νi j = −1.

where c†
i = (c†

i↑, c†
i↓), with c†

iσ (σ =↑,↓) being the creation
operator of an electron with spin-σ at the ith site, si (i =
x, y, z) is the spin-1/2 Pauli matrix, t is the nearest-neighbor
hopping amplitude, tso denotes the spin-orbit interaction as-
sociated with the next-nearest-neighbor hopping with νi j =
±, depending on the hopping direction of the electrons (see
Fig. 1), and λ represents the in-plane Zeeman field strength
along the y direction. In this paper, we assume tso = 0.1t .

In momentum space, by Fourier transforming Eq. (1), we
obtain H0 = ∑

k �†H0(k)�, with

H0(k) =
[

t + 2t cos

(
3ky

2

)
cos

(√
3kx

2

)]
σx + λσ0sy

+ 2t sin

(
3ky

2

)
cos

(√
3kx

2

)
σy

+ 4tso cos

(
3ky

2

)
sin

(√
3kx

2

)
σzsz

− 2tso sin(
√

3kx )σzsz, (2)

where � = (cA,k,↑, cA,k,↓, cB,k,↑, cB,k,↓)T , and σ and s are
Pauli matrices acting on the sublattice and spin degrees of
freedom, respectively.

The system H0(k) in Eq. (2) exhibits distinct topological
phases, depending on the Zeeman field λ. In the absence
of an in-plane magnetic field (i.e., λ = 0), H0(k) reserves
a time-reversal symmetry, and it is a quantum spin Hall in-
sulator characterized by a Z2 topological number [65]. This
first-order topological phase supports a pair of helical gap-
less edge modes counterpropagating along the zigzag edge
of the lattice. Once we apply the in-plane magnetic field
(i.e., λ �= 0), the time-reversal symmetry is broken. In this
case, a topological phase transition occurs, and the system
enters a second-order topological phase regime. In the open
boundary condition, the diamond-shaped nanoflake supports
two localized corner modes. These corner modes are protected
by the y-mirror symmetry My = iσxsy and chiral symmetry.
The existence of second-order corner modes is determined by

two mirror-graded winding numbers [63] of the Hamiltonian
H0(kx, ky = 0), defined in the eigenstate subspaces of the y-
mirror symmetry operator along the high-symmetry line with
ky = 0.

To be concrete, the system H0(k) enters the second-order
topological phase regimes for 0 < λ/t < 1. Figures 2(a) and
2(b) show the eigenenergies under open boundary conditions
along the y direction, and both x and y directions, respectively.
Second-order midgap bound states exist for λ/t = 0.1. For
λ/t > 1, the system H0(k) shows a topological semimetal
phase protected by y-mirror symmetry. When considering
only the half filling, it is a topologically trivial semimetal
phase for 1 < λ/t < 3, and a trivial insulator for λ/t > 3.

In order to study the effects of electron-phonon cou-
pling on higher-order topological phases, we couple spinful
fermions to the lattice degrees of freedom. The hybrid sys-
tem is described by the Holstein electron-phonon coupling
Hamiltonian [59]

H = H0 + Hint, (3)

with

Hint = ω0

∑
i

d†
i di + gω0

∑
i,σ

(
c†

i,σ ci,σ − 1

2

)
(d†

i + di ), (4)

where d†
i creates a phonon at site i, ω0 is the frequency of the

optical phonon mode, and g represents the Holstein electron-
phonon coupling strength. In this work, we consider the half
filling of spinful electrons, and introduce the dimensionless
parameter α = g2ω0/4t . By changing the value of α, we found
that a topological quantum transition from the semimetal
phase to the second-order topological insulator phase can oc-
cur without changing the parameters of the electronic system.

III. THEORETICAL APPROACHES

A. High optical-mode-frequency limit and Lang-Firsov
transformation

We first consider a limited case with the phonon-mode
frequency ω0 much larger than the electronic parameters, i.e.,
ω0 � t , tso, λ, and g. Now, we can analytically demonstrate
the hidden physics of topological phase transitions caused
by electron-phonon coupling. In the high optical-mode-
frequency limit, by applying the Lang-Firsov transformation
[59],

HLF = eSHe−S, (5)

with

S = g
∑
i,σ

(
c†

i,σ ci,σ − 1

2

)
(d†

i − di ), (6)

we obtain

HLF = H̃0 + H̃int, (7)

with

H̃0 = − t
∑
〈i j〉

c†
i c jX

†
i Xj + itso

∑
〈〈i j〉〉

νi jc
†
i szc jX

†
i Xj

+ λ
∑

i

c†
i syci, (8)
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FIG. 2. Band structures under open boundary conditions along the y direction for (a) λ/t = 0.1, (c) λ/t = 1.5, and (d) λ/t = 3.2.
(b) Eigenenergies under open boundary conditions along the x and y directions for λ/t = 0.1.

and

H̃int = ω0

∑
i

d†
i di − 2ω0g2Nc, (9)

where Xi = eg(di−d†
i ), and Nc is the number of unit cells.

By considering the thermal average of the phonon modes,
we obtain 〈X †

i Xj〉 = e−g2(2N0+1), where N0 = (eβω0 − 1)−1,
with β = 1/kBT , and kB being the Boltzmann constant. Here,
we just consider the thermal average of the phonon mode,
and neglect its quantum fluctuation X †

i Xj − 〈X †
i Xj〉 for the

limited condition ω0 � t , tso, λ, and g. In this antiadiabatic
regime, the electronic hopping hardly affects the distribution
of phonons, because there exists a larger energy gap between
different phonon excitations than the hopping strength of
electrons, such that the fast lattice fluctuations make phonon
modes immediately follow the charge carriers without mod-
ifying their distribution. Therefore, by rewriting Eq. (8), the
parameters t and tso are renormalized as

t̃ = te−g2(2N0+1), t̃so = tsoe−g2(2N0+1). (10)

Note that λ in Eq. (8) is not renormalized. In this case, when
we tune the electron-phonon coupling strength g, a topological
phase transition can occur.

B. Cluster perturbation theory

To numerically solve the electron-phonon coupling in
Eq. (3), we calculate the electronic Green’s function by em-
ploying the cluster perturbation theory [59,64]. The basic idea
of the cluster perturbation theory is to divided the infinite
lattice into identical clusters, and each cluster contains a finite
number of lattice sites. In this case, all the clusters form a
superlattice structure with each cluster being a unit cell. In this
work, we choose a two-site cluster, containing two nearest-
neighbor sublattices, as the unit cell of the superlattice.

We rewrite Eq. (3) as the sum of the cluster Hamiltonian
and intercluster coupling H = H0 + Vint, with

H0 =
∑

rc

h0(rc), (11)

and

Vint = − t
∑
〈i j〉

∑
rc �=r′

c

c†
i (rc)c j (r′

c) + itso

∑
〈〈i j〉〉

∑
rc �=r′

c

νi jc
†
i (rc)szc j (r′

c), (12)

where h0(rc) reads

h0(rc) = − t
2∑

i �= j

c†
i (rc)c j (rc) + λ

2∑
i

c†
i (rc)B · sci(rc ) + ω0

∑
i

d†
i (rc)di(rc) + gω0

2∑
i

(
c†

i (rc)ci(rc) − 1

2

)
[d†

i (rc) + di(rc)],

(13)

where h0(rc) is each cluster Hamiltonian, Nc is the number of
the clusters, rc denotes the site of the center of each cluster,
the subscripts i and j denote the sites of the element in each
cluster, and Vint describes the hopping between clusters.

When employing the cluster perturbation theory, Vint is
considered as a perturbation to the cluster Hamiltonian H0.
Therefore, the system Green’s function G(z) can be written in
terms of the cluster Green’s function G(z) and the perturbation
V as

G−1(z) = G−1(z) − Vint, (14)

where z = ω + iη.

The original lattice has translation symmetry. Therefore,
we can Fourier transform, over the whole superlattice, G−1(z)
and V in Eq. (14), and achieve

G−1(k̃, z) = G−1(z) − Vint(k̃), (15)

where k̃ is the wave vector corresponding to the first Brillouin
zone of the superlattice, and k̃ = k for our case. G(z) is the
retarded cluster Green’s function at zero temperature, and it
can be written as

G(z)iσ, jσ ′ =
∫

dt e(iω−η)t (−iθ (t )〈�|[ciσ (t ), c†
jσ ′ (0)]+|�〉)

= G+
iσ, jσ ′ (z) + G−

iσ, jσ ′ (z), (16)
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FIG. 3. (a) The renormalized parameters μ/μ̃ vs α for the cluster perturbation theory (CPT) and Lang-Firsov approach, respectively. Here,
μ = λ/t and μ̃ = λ̃/t̃ . The electron-phonon coupling modifies the system’s parameters. The blue vertical line marks the band-gap closing
point for μ/μ̃ = 0.96 and μ̃ = 1 with α = g2ω0/4t = 0.026. (b) The renormalized band gap � vs α. For α = 0.026, the band gap becomes
closed, indicating that a topological phase transition occurs.

where

G+
iσ, jσ ′ (z) = 〈�|ciσ (z − h0 + E0)−1c†

jσ ′ |�〉, (17)

G−
iσ, jσ ′ (z) = 〈�|c†

iσ (z + h0 − E0)−1c jσ ′ |�〉. (18)

In Eqs. (17) and (18), |�〉 is the ground state of the clus-
ter Hamiltonian h0 in Eq. (13), and E0 is the corresponding
ground-state energy.

After solving out Eq. (15), the one-electron spectral func-
tion can be calculated as

A(k̃, ω) = − 1

π
lim

η→0+
Im G(k̃, ω + iη), (19)

where η can be interpreted as the broadening factor.

IV. NUMERICAL RESULTS

To study the effects of an electron-phonon interaction on
the higher-order topological features, we set the following
parameters, ω0/t = 1, tso/t = 0.1, and λ/t = 0.96, where the
system, in the absence of electron-phonon coupling, is in the
second-order topological phase regime near the phase transi-
tion point towards a semimetal phase for half filling. In this
work, we consider only the half-filling case.

As stated above, the Lang-Firsov transformation has shown
that the electron-phonon coupling can renormalize system
parameters. Furthermore, topological phase regimes are de-
termined by λ/t , as shown in Fig. 2. To reveal the effect
of electron-phonon coupling on the system parameters, we
plot the ratio of μ = λ/t to the renormalized value μ̃ =
λ̃/t̃ as an introduced dimensionless parameter α = g2ω0/4t
varies, as shown in Fig. 3(a). These results calculated by the
cluster perturbation theory are compared with those by the

FIG. 4. Energy bands calculated by Heff = −G−1(kx, ky, ω = 0) with kx = 0 for (a) α = 0, (b) α = 0.026, and (c) α = 0.05, respectively.
A topological phase transition occurs for α = 0.026, below which it is an insulator, and becomes a semimetal once α > 0.026. Here, we only
show the two bands closest to the Fermi level at half filling. The bands marked by red and orange circles are used to calculate the fermionic
number. Note that the ground states are not degenerate.
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FIG. 5. The average number of fermions n2(�) and n3(�) for two bands closest to the Fermi level. These two bands initially lie below
and above the Fermi energy before the electron-phonon coupling is turned on, and then they pass through the Fermi energy as α increases for
different broadening factors η. The subscript here represents the band with the second and third lowest energy when α equals zero.

Lang-Firsov approach. As α increases, μ̃ rises, indicating
that the electron-phonon coupling can modify the system’s
parameters and exhibits the potential for causing the topolog-
ical phase transitions. In addition, by comparing the results
calculated from the Lang-Firsov approach and the ones from
the cluster perturbation theory in Fig. 3(a), as the dimensional
parameter α increases, the quantum fluctuation of phonon
modes starts playing an important role in determining the
electronic properties in the large electron-phonon coupling
regime.

The topological phase transitions are accompanied by the
band-gap closing. In Fig. 3(b), we plot the band gaps at half
filling versus α. As the α increases, the band gap reduces, and
become closed for α = 0.026, indicating that a topological
phase transition occurs. Furthermore, as shown in Fig. 4, we
calculate the band structures of the effective Hamiltonian Heff,
constructed via the full Green’s function at zero frequency
as Heff = −G−1(kx, ky, ω = 0), with kx = 0 for different α,
below which it is an insulator, and becomes a semimetal once
α > 0.026. Here, we only show the two bands closest to the
Fermi level at half filling. The insulator and semimetal phases
are clearly shown, and the phase transition from the insulator
to semimetal takes place at α = 0.026. Note that the ground
states are not degenerate.

To characterize this phase transition, we calculate the av-
erage fermionic number ni of the ith band at � point for half
filling as

ni(kx, ky) =
∫

Ãi,i(kx, ky, ω)nF (ω)dω, (20)

with

Ã(k, ω) = Û †(k)A(k, ω)Û (k), (21)

where Û (k) is a unitary matrix used to diagonalize Hamilto-
nian H0(k) in Eq. (2), and nF is the Fermi-Dirac distribution.
In Fig. 5, we plot n2(�) and n3(�) as a function of α respec-
tively at zero temperature. The bands in Fig. 4, marked by red
and orange circles, are used to calculate the fermionic number.
As α increases, n2(�) changes from one to zero, while n3(�)
varies from zero to one. n2(�) and n3(�) become discontinu-

ous when we decrease the broadening factor η in Eq. (19) at
the phase transition. This discontinuity at the transition point
directly indicates the topological phase transition.

In order to further determine the second-order topological
phase transition, we calculate the topological invariant. The
bare modified Kane-Mele model, in the presence of electron-
phonon coupling, preserves the y-mirror symmetry. As in the
single-particle case [63], we calculate the winding number of
the effective Hamiltonian Heff(kx, ky) = −G−1(kx, ky, ω = 0)
[65] with ky = 0. In the subspace defined y-mirror symmetry,
we can rewrite the Hamiltonian Heff in block diagonal form
along the high-symmetry line

Heff(kx, ky = 0) =
(
H+(kx ) 0

0 H−(kx )

)
, (22)

and then we can define the two mirror-graded winding num-
bers

ν± =
∫ π

−π

dkx

4π i
Tr

[
τzH−1

± (kx )∂kxH±(kx )
]
, (23)

FIG. 6. Winding number ν = ν− + ν+ vs α. As the α increases,
ν changes from 2 (ν± = 1) to 1 (ν+ = 0, ν− = 1), indicating that a
second-order topological phase transition occurs.
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FIG. 7. Phase diagram of the charge-phonon coupling system
considered. There exist three phases: a second-order topologically
trivial insulator with ν = 0, a semimetal with ν = 1, and a second-
order topologically nontrivial insulator with ν = 2.

which can indicate a different phase. Note that quantized
winding number is ensured by the chiral symmetry of the sys-
tem. When the system is in a second-order TI phase, ν± = 1,
otherwise it is a second-order topological trivial phase. In
our work, we directly calculate ν = ν− + ν+, which can be
written as

ν =
∫

dkx

4π i
Tr

[
τ0 ⊗ τzG(kx, 0)∂kx G

−1(kx, 0)
]
. (24)

If ν = 2, the system is in the second-order topological phase,
otherwise it is topologically trivial. In Fig. 6, we plot the
winding number as a function of α, which is also discon-
tinuous at α � 0.026. This indicates that a second-order
topological phase transition occurs at this point. In Fig. 7,
we present the phase diagram of the charge-phonon coupling
system considered here. There exist three phases: a second-
order topologically trivial insulator with ν = 0, a semimetal
with ν = 1, and a second-order topologically nontrivial in-
sulator with ν = 2. Overall, the electron-phonon coupling
studied in this work can induce higher-order topological
phase transitions, and the inevitable roles played by such an
electron-phonon interaction should be considered in solid-
state materials.

V. CONCLUSION

We have considered a modified Kane-Mele model, which
hosts a second-order topological phase for the single-particle
case, subjected to electron-phonon coupling. Such a hybrid
system is described by the Holstein Hamiltonian, and is solved
by using the cluster perturbation approach. We started with the
bare modified Kane-Mele model, which is in the second-order
topological phase regime in the absence of electron-phonon
coupling. When the electron-phonon interaction is turned
on, our theoretical calculations on the spectral function via
Green’s functions show that the band gap becomes closed
as the electron-phonon interaction strength increases, and the
fermionic number exhibits a finite discontinuity at the tran-
sition point at the critical electron-phonon coupling strength.
These indicate a topological phase transition. By calculating
the topological invariant, the second-order topological phase
transition, driven by the electron-phonon coupling, is verified.

The modified Kane-Mele model can be realized via ap-
plying ferromagnetism with in-plane anisotropy [63] to topo-
logical insulators of silicene [66] and jacutingaite (Pt2HgSe3)
[67], while the electron-phonon coupling may be tuned by the
strain or electric field [68]. In addition, the electron-phonon
coupling studied here may be simulated using Rydberg states
of cold atoms and trapped ions [69–71].
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