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Sudden death of entanglement with a Hamiltonian ensemble assisted by auxiliary qubits
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In this paper, we theoretically propose a method to simulate the longitudinal relaxation of a single qubit by
coupling it to an auxiliary qubit. In order to mimic the finite-temperature relaxation, we utilize the Hamiltonian-
ensemble approach [C. M. Kropf, C. Gneiting, and A. Buchleitner, Phys. Rev. X 6, 031023 (2016)]. The
longitudinal relaxation arises as a consequence of the ensemble average and the interaction between the working
qubit and the auxiliary qubit. Furthermore, we apply this approach to investigate the influence of the longitudinal
relaxation and the transverse relaxation on the entanglement dynamics of two qubits. It is discovered that the
sudden death of the entanglement will occur as long as the longitudinal relaxation is present. The transverse
relaxation assists the longitudinal relaxation and thus accelerates the finite-time disentanglement.
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I. INTRODUCTION

In an open quantum system, the interaction between
the system and the environment will lead to the exchange
of information and energy between them. As a result, the
dynamic behavior of the system is quite different from that
of an isolated system [1–6]. Generally, there are two types of
relaxations, i.e., transverse relaxation and longitudinal relax-
ation. The latter will result in population transfer and decay of
the off-diagonal terms of the density matrix, while the former
will only decrease the coherence. These two behaviors play a
crucial role in quantum information processing.

Recently, it was proposed that the quantum dynamics of
an open quantum system can be simulated by the ensemble-
averaged state of many random isolated systems [7–13]. The
process of ensemble averaging over each random realization
will result in averaging all random phases, thus inducing the
loss of phase information, i.e., dephasing. However, due to
the classical property of noise, most of the previous quantum-
simulation approaches can only simulate the longitudinal
relaxation at the high-temperature limit [12–16]. The quantum
simulation of the longitudinal relaxation at finite temperature
is rarely studied. Since the dissipative environment can cause
finite-time disentanglement [17–19], enhanced relaxation at
avoided level crossing [20–22], and optical nonreciprocity
by detailed balance [23], it may be interesting to in depth
understand the influence of transverse relaxation and longi-
tudinal relaxation on the sudden death of entanglement and its
dynamic simulation.

In this paper, in order to simulate the longitudinal relax-
ation at finite temperature, we introduce an auxiliary qubit
which interacts with the working qubit. In order to mimic the
longitudinal relaxation, we effectively prepare a large num-
ber of systems including the auxiliary qubit and the working
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qubit. They evolve from the same initial state and in each
realization the interaction strength is subject to a Gaussian
random distribution. By averaging over the different realiza-
tions, we can effectively simulate the longitudinal relaxation.
Our analytical results demonstrate that this approach can well
simulate the finite-temperature longitudinal relaxation with
the dissipation rate linearly dependent on time. Here, the
dissipation rate scales linearly with the variance of the random
interaction strength between the auxiliary qubit and the work-
ing qubit. The initial state of the auxiliary qubit determines
the distribution of the steady state.

We further investigate the effects of longitudinal and trans-
verse relaxation on the entanglement of two qubits. We let the
first working qubit interact with the auxiliary qubit to mimic
the longitudinal relaxation, and apply a random field on the
second working qubit to simulate the transverse relaxation.
These two working qubits are initialized in the maximum-
entangled state and the concurrence is utilized to charac-
terize the dynamics of entanglement. Our simulations show
that due to the longitudinal relaxation, the sudden death of
entanglement happens at a finite time. In this case, the trans-
verse relaxation of the second working qubit will accelerate
the finite-time disentanglement of the two qubits. However, if
the longitudinal relaxation is absent, the entanglement will go
to zero when the time approaches infinity.

The rest of the paper is structured as follows. In Sec. II, we
introduce the quantum-simulation approach by Hamiltonian
ensemble. In Sec. III, we simulate the longitudinal relaxation
of a single qubit at a finite temperature. The effects of the
noise fluctuation and interaction strength on entanglement
sudden death are investigated in Sec. IV. Finally, we conclude
our main discoveries in Sec. V.

II. HAMILTONIAN-ENSEMBLE APPROACH

First of all, we shall give a brief introduction to
the quantum-simulation approach by an ensemble of
Hamiltonians [9,11–13], as schematically illustrated in
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FIG. 1. Schematic diagram for simulating the longitudinal re-
laxation of a single qubit by the Hamiltonian-ensemble approach
assisted by an auxiliary qubit. Each realization is composed of a
working qubit A1 and an auxiliary qubit A2. In each realization,
they evolve independently from the same initial state ρ(0). The
ensemble-averaged state TrA2 ρε (t ) is then obtained by averaging
over all reduced density matrix TrA2 ρεi (t ) (i = 1, 2, . . . , N) of the
working qubit.

Fig. 1. A general open quantum system can be characterized
by a total Hamiltonian ĤT = ĤS + ĤE + ĤI [2], where ĤS is
the system Hamiltonian, ĤE is the environment Hamiltonian,
and ĤI represents their interaction. The time evolution of the
open system can be described as ρT (t ) = ÛρT (0)Û †, with
Û = exp(−iĤT t/h̄). Thus, the density matrix of the system
can be obtained by partially tracing over the environmental
degrees of freedom, i.e., ρS (t ) = TrE [ρT (t )]. To simulate the
open quantum dynamics, we utilize the Hamiltonian ensemble

{(Ĥε, pε )}, (1)

where the subscript ε denotes each realization in the
ensemble. The single realization Hamiltonian Ĥε occurring
with probability pε reads

Ĥε = ĤS + Ĥ ε
E + V̂ε. (2)

Ĥ ε
E and V̂ε are utilized to simulate the environment and

its interaction with the system. We suppose that each
realization begins from the same initial state ρε(0) = ρ(0).
The corresponding evolution at time t is given by
ρε(t ) = Ûερ(0)Û †

ε , with Ûε = exp(−iĤεt/h̄). Finally, we
trace over the environmental degree of freedom in each
realization and then average over all realizations, i.e.,

〈ρ(t )〉 = TrE ρε(t ) =
∫

dε pε TrE ρε(t ). (3)

Hereafter, all ensemble-averaged quantities will be marked
with a bar. In the next section, as an example, we utilize the
ensemble-averaged quantum dynamics of the state 〈ρ(t )〉 to
simulate the longitudinal relaxation behavior of a single qubit.

III. LONGITUDINAL RELAXATION OF A SINGLE QUBIT

In the previous investigations, due to the classical property
of the noise, the quantum simulation approach can only sim-
ulate the longitudinal relaxation at the high-temperature limit
[6,12,13]. In this paper, we introduce an auxiliary qubit, which
interacts with the working qubit as schematically illustrated in
Fig. 1, in order to simulate the longitudinal relaxation at finite

temperatures. In the Hamiltonian ensemble, the Hamiltonian
of a realization reads

Ĥε = ω0

2

(
ωAσ A1

z + ωAσ A2
z

) + f (ω0ε)σ A1+ σ
A2−

+ f ∗(ω0ε)σ A1− σ
A2+ , (4)

where we set h̄ = 1, σz is the Pauli matrix, σ± are the raising
and lowering operators, and ω0 is the unit for frequency.
Hereafter, we set ω0 = 1 in the following simulations. f (ε) =
f ∗(ε) is the coupling strength between the working qubit and
the auxiliary qubit. For simplicity, the two-qubit product states
are relabeled as

|1〉A1A2 = |+−〉A1A2 , |2〉A1A2 = |−+〉A1A2 ,

|3〉A1A2 = |++〉A1A2 , |4〉A1A2 = |−−〉A1A2 ,
(5)

where |±±〉A1A2 ≡ |±〉A1 ⊗ |±〉A2 denote the eigenstates of
Pauli operator σ A1

z ⊗ σ A2
z . Since σ A1

z ⊗ σ A2
z is the conserved

quantity, i.e., [σ A1
z ⊗ σ A2

z , Ĥε] = 0, we can rewrite Ĥε as a
block-diagonal matrix in the basis listed in Eq. (5),

Ĥε =
(

Ĥ−
ε 0

0 Ĥ+
ε

)
, (6)

where

Ĥ−
ε = f (ε)σx,

Ĥ+
ε = ωAσz. (7)

The total evolution operator exp(−iĤεt ) can be represented as

Ûε =
(

Û −
ε 0

0 Û +
ε

)
, (8)

where

Û −
ε = cos[ f (ε)t] − i sin[ f (ε)]σx,

Û +
ε = cos(ωAt ) − i sin(ωAt )σz. (9)

We assume that the initial state is a product state |ψ (0)〉 =
|φ(0)〉A1

⊗ |ϕ(0)〉A2
, where the working qubit A1 is in the state

|φ(0)〉A1
= |−〉A1

, and the auxiliary qubit A2 is in a super-
position state |ϕ(0)〉A2

= xA2 |+〉A2
+ yA2 |−〉A2

. The reduced
density matrix of the working qubit A1 can be obtained by
partially tracing over A2,

ρA1 (t ) = TrA2 (Ûε|ψ (0)〉〈ψ (0)|Û †
ε ). (10)

For simplicity, we assume that the coupling strength is of the
form

f (ε) = α(ε − s), (11)

where ε is a random number for each realization. The physical
meanings of parameters α and s depend on different physical
implementations. Here, we propose a solution that can imple-
ment our model. The two-qubit interaction in Eq. (4) can be
realized by the effective dipole-dipole interaction between two
two-level atoms coupled to the photonic crystal modes, where
the atomic resonance is close to one of the band edges of the
photonic crystal [24]. The effective interaction between the
two atoms in the interaction picture is

HI ≈ g2
c

2ωA
F

(
zA1 , zA2

)
(σ A1+ σ

A2− + σ
A1− σ

A2+ ), (12)
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FIG. 2. The longitudinal relaxation against xA2 , ε2, and α for s = 0. The population of the subsystem A1 at |+〉 under ensemble average
(a) for xA2 = 1, 0.8, 0.6, when ε2 = 1 and α = 5, (b) for ε2 = 5, 0.5, 0.2 when xA2 = 0.8 and α = 5, and (c) for α = 6, 3, 2, when xA2 = 0.8
and ε2 = 1. The analytic results are shown as solid lines, while the dotted lines are generated by N = 8000 random samples with ε = 0.

where gc = g
√

2π/L, g is the coupling strength between the
atom and photon, and L is the length scale of the photon
decays from the atomic position z j . The tunable function
F (zA1 , zA2 ) decays exponentially with the distance |zA1 −
zA2 | between the two atoms. Thus, we can adjust the dis-
tance between the two atoms in the experiment such that
F (zA1 , zA2 )/ωA = ε − s, and α in our model is determined
by g2

c/2.
The matrix elements of ρA1 read, respectively,

ρ++
A1

(t ) ≡ 〈+|ρA1 (t )|+〉
= 1

2 |xA2 |2{1 − cos[2α(ε − s)t]},
ρ+−

A1
(t ) ≡ 〈+|ρA1 (t )|−〉

= ixA2 y∗
A2

e−iωAt sin [α(ε − s)t]. (13)

Here, we assume that ε is subject to a Gaussian distribution
with mean zero and the ensemble-averaged state 〈ρ(t )〉 de-
fined in Eq. (3) can be written as

〈ρ(t )〉++ ≡ ρ++
A1

(t )

= 1
2 |xA2 |2[1 − cos(2αst )e−2α2ε2t2

],

〈ρ(t )〉+− ≡ ρ+−
A1

(t )

= ixA2 y∗
A2

e−iωAt sin(αst )e−α2ε2t2/2. (14)

Here, we have utilized the moment identity of a Gaussian
distribution with mean zero, i.e., ε2n = (ε2)n(2n)!/(2nn!) and
ε2n−1 = 0 (n = 1, 2, . . .) [25].

This result can be considered as the thermalization of the
working qubit A1 in a thermal bath, which is in a thermal
equilibrium at temperature T . When the system A reaches
the thermal equilibrium, its probability at the excited state
is P+ = e−β�(1 + e−β�)−1 [2], with β = 1/kBT , and kB

being the Boltzmann constant, where � is the energy-level
difference between the two levels. The dissipation rate
(t ) = 2α2ε2t is linear with respect to time t , which can be
utilized to improve the quantum metrology and thus achieve
Zeno limit [26–28]. To simulate this steady-state distribution
at arbitrary temperature T , we can effectively tune the initial
state of the auxiliary qubit A2, i.e., xA2 and yA2 , to fulfill that

P+ = ρ++
A1

(t → ∞). Notice that for any temperature T , this
formula can always be satisfied because 0 � xA2 � 1, and

thus 0 � ρ++
A1

(t → ∞) < 1/2.
Here, as a demonstration, we simulate a process of a single

qubit, initialized in the ground state, relaxation to the equi-
librium state at a finite temperature T through interaction
with the heat reservoir. In this simulation, this process can
be controlled by the initial state of the auxiliary qubit, the
properties of the noise characterized by ε2, and the coupling
strength characterized by α. The behaviors of the longitudinal
relaxation against the parameters, i.e., xA2 , ε2, and α, are
plotted in Fig. 2. In Fig. 2(a), we leave ε2 and α unchanged
and only vary xA2 . We find that xB does not change the re-
laxation time, but does change the steady-state population. In
contrast, we can observe in Figs. 2(b) and 2(c), the relaxation
time will decrease with the increase of the noise variance
ε2 and the coupling strength α, which do not change the
steady-state population. The above observations are reason-
able since the relaxation rate is (t ) = 2α2ε2t according to
Eq. (13). This relaxation process is not Markovian because
the relaxation rate is time dependent. We remark that the
relaxation process can be Markovian if the bath-engineering
technique is utilized, i.e., the interaction strength between the
working qubit and the auxiliary qubit is temporally tuned
[15,28]. However, it is beyond the scope of the present
investigation.

In order to verify our numerical simulation, the analytical
and numerical results of full elements of the density matrix
are compared in Fig. 3. We find that when s �= 0, both the
longitudinal and transverse relaxation behaviors demonstrate
an oscillatory decay, but the decay of the transverse relaxation
is slower. As shown in Fig. 3(b), the interaction between the
subsystem A1 and the auxiliary qubit A2 will induce the coher-
ence between the ground state and the excited state, since the
auxiliary qubit is initially in a superposition. However, when
the steady state is reached, the coherence of the subsystem A1

disappears and thus becomes a mixed state. Moreover, since
the numerical results agree with the analytical results, our
numerical simulations are reliable. To summarize, in this sec-
tion, we utilize an auxiliary qubit to effectively simulate the
longitudinal relaxation process of a single qubit at arbitrary
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FIG. 3. Comparison of analytical and numerical results for the
longitudinal relaxation of a single qubit. In the numerical calculation,
we select N = 5000 random samples {ε} of Gaussian distribution
with variance 0.6 and expectation 0. The quantum dynamics of (a) the
excited-state population 〈ρ(t )〉++ and (b) the modular square of the
coherence |〈ρ(t )〉+−|2, when s = 4, xA2 = 0.9, ε2 = 0.6, and α = 1.

temperature. It is found that the initial state xA2 , frequency
variance ε2 of the auxiliary qubit, and the interaction strength
between the working qubit and the auxiliary qubit together
determine the relaxation time and steady-state population of
the longitudinal relaxation.

IV. FINITE-TIME DISENTANGLEMENT

In this section, we simulate the quantum dynamics of
two-qubit disentanglement and investigate the effects of
longitudinal and transverse relaxation on the disentanglement
behavior. The system includes two working qubits, i.e., qubits
A1 and B1, where the former interacts with an auxiliary
qubit, i.e., qubit A2, as schematically demonstrated in Fig. 4.
Thus, the total Hamiltonian can be written in two parts as

FIG. 4. Schematic illustration of simulating sudden death of en-
tanglement in a two-qubit system. Qubits A1 and B1 are initialized
in the maximum-entangled state and have no interaction with each
other. The random energy-level spacing characterized by εB is used to
simulate the transverse relaxation of B1. We simulate the longitudinal
noise of A1 through the interaction between A1 and the auxiliary
qubit A2.

Ĥε = ĤA
ε + ĤB

ε , where

ĤA
ε = ω0

2

(
ωAσ A1

z + ωAσ A2
z

) + f (ω0εA)σ A1+ σ
A2− + H.c.,

ĤB
ε = ω0

2

(
ωBσ B1

z + εBσ B1
z

)
. (15)

The composite system composed of A1 and B1 is ini-
tialized in the maximum-entangled state, i.e., |ψ (0)〉A1B1

=
(|++〉A1B1

+ |−−〉A1B1
)/

√
2. We let A1 interact with an aux-

iliary qubit A2 to mimic the longitudinal relaxation, as
depicted in Sec. III, where f (εA) is the coupling strength
between A1 and A2. For qubit B1, we apply a random energy-
level spacing described by εB to simulate the transverse
relaxation [9,12,13].

Before the ensemble average, we first of all solve the quan-
tum dynamics of each realization. The initial state of the three
qubits reads

ρ(0) = x|ψ1(0)〉〈ψ1(0)| + y|ψ2(0)〉〈ψ2(0)|, (16)

where

|ψ1(0)〉 = 1√
2
|+〉A2

⊗ (|++〉A1B1
+ |−−〉A1B1

),

|ψ2(0)〉 = 1√
2
|−〉A2

⊗ (|++〉A1B1
+ |−−〉A1B1

). (17)

As in Sec. III, we define the coupling strength as f (εA) =
α(εA − s). The ensemble-averaged state of the two working
qubits, i.e., ρA1B1 (t ), can be written as

ρA1B1 (t ) =

⎛
⎜⎜⎜⎜⎝

a(t ) 0 0 0

0 b(t ) z(t ) 0

0 z∗(t ) c(t ) 0

0 0 0 d (t )

⎞
⎟⎟⎟⎟⎠, (18)

where we assume that εA and εB are subject to independent
Gaussian distributions. The nonvanishing matrix elements of
Eq. (18) are explicitly given as

a(t ) = x

4

[
1 − cos(2αst )e−2α2ε2

At2]
,

b(t ) = x

2
+ y

4

[
1 + cos(2αst )e−2α2ε2

At2]
,

c(t ) = y

2
+ x

4

[
1 + cos(2αst )e−2α2ε2

At2]
,

z(t ) = 1

2
e−(1/2)ε2

Bt2
e−(i/2)(ωA+ωB )t e−(1/2)ε2

Aα2t2
cos(αst ),

d (t ) = y

4

[
1 − cos(2αst )e−2α2ε2

At2]
. (19)

The detailed derivation of the above expressions appears in
the Appendix.

To investigate the disentanglement behavior of the compos-
ite system composed of A1 and B1 under both longitudinal and
transverse relaxation, we utilize the concurrence [29] to char-
acterize the entanglement property C(ρA1B1 ) = max(0,

√
κ1 −√

κ2 − √
κ3 − √

κ4), where κi’s are the eigenvalues of the
matrix G in decreasing order

G ≡ ρA1B1

(
σ A

y ⊗ σ B
y

)
ρA1B1

∗(σ A
y ⊗ σ B

y

)
, (20)
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where σα
y (α = A, B) are the Pauli operators. When C = 1,

the two working qubits are in the maximum-entangled state,
whereas when C = 0, they are disentangled with each other.
Here, we can simplify the concurrence as

C(ρA1B1 ) = 2 max{0, |z| −
√

ad}. (21)

At the beginning, A1 and B1 are initialized in the maximum-

entangled state with |z| = 1/2 and
√

ad = 0. In the following,
we will show two categories of disentanglement in our simu-
lation. In the first category, the entanglement tends to vanish
only when the time approaches infinite. In the second cat-
egory, the entanglement decays exactly to zero at a critical
disentanglement time tc and remains zero thereafter.

We first investigate the influence of the longitudinal re-
laxation on the entanglement properties when there is no
transverse relaxation, i.e., ε2

B = 0, in the system. In this case,
the disentanglement behavior of the system is dominated by
the coupling strength α and the noise fluctuation ε2

A. Obvi-
ously, when α = 0, i.e., the subsystem A1 does not interact
with the auxiliary qubit A2, the system will always be in
the maximum-entangled state. When α > 0, the nonvanishing
noise fluctuation ε2

A will determine whether the entanglement
of the system can disappear at a finite time. When α > 0 and
ε2

A = 0, i.e., the longitudinal relaxation is turned off, |z| and√
ad can be written as

|z| = 1

2
| cos(αst )|,

(22)√
ad =

√
xy

4
[1 − cos(2αst )],

such that |z| = 1/2 and
√

ad = 0, and thus the entanglement
of the system will not disappear persistently. However, if we
turn on the longitudinal relaxation, i.e., α > 0 and ε2

A > 0, |z|
tends to zero and

√
ad = √

xy/4 when the time approaches
infinity. Thus, as long as xy > 0, there exists a finite tc, making
the entanglement disappear after time tc. The critical disentan-
glement time tc against ε2

A and α without transverse relaxation

is shown in Fig. 5. We find that when α > 0 and ε2
A > 0,

the entanglement will disappear at a finite time and tc decays
monotonically and rapidly as α and ε2

A increase.
Now we consider the case when there is only transverse

relaxation, i.e., ε2
B > 0 and ε2

A = 0. The evolution of |z| and√
ad can be written as

|z| = 1

2
e−(1/2)ε2

Bt2 | cos(αst )|,
√

ad =
√

xy

4
[1 − cos(2αst )]. (23)

Obviously, |z| tends to zero when the time approaches infinite.
No matter how long the time passes, there always exist 2αst =
2nπ with n ∈ Z so that

√
ad vanishes. Thus, the concurrence

will not constantly remain zero after a finite time but will go
to zero at infinite time.

We can conclude that when the longitudinal relaxation
exists, i.e., α > 0 and ε2

A > 0, entanglement will disappear at a
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FIG. 5. The critical disentanglement time tc against α and ε2
A for

x = 0.2, ε2
B = 0, and s = 0.

finite time. The larger the transverse noise fluctuates, the faster
the entanglement disappears. And the oscillation frequency of
A1 hardly affects the time of disentanglement. The dynamics
of concurrence against ε2

B and s in this case are shown in
Figs. 6 and 7, respectively. From Fig. 6, we find that even
if ε2

B = 0, the concurrence will remain zero after the critical
disentanglement time and decay faster with the increase of
ε2

B. From Fig. 7, we find that when the noise fluctuation and
interaction strength are kept constant, the higher the frequency
of subsystem A1, the faster the entanglement C oscillates, but
the critical disentanglement time is almost the same. When the
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FIG. 6. The concurrence C(t ) as a function of time t in the pres-
ence of both longitudinal and transverse relaxation for ε2

B = 0, 0.5, 2

when x = 0.2, ε2
A = 0.5, α = 1, and s = 0. Notice that the transverse

relaxation is turned off when ε2
B = 0. The analytic results are shown

as solid lines. The dotted lines are generated by N = 300 random
samples with εA = εB = 0.
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FIG. 7. The concurrence C(t ) as a function of time t in the pres-
ence of both longitudinal and transverse relaxation for s = 0, 3, 6,
when x = 0.2, ε2

A = 0.5, ε2
B = 0.2, and α = 1. The analytic results

are shown as solid lines. The dotted lines are generated by N = 300
random samples with εA = εB = 0.

system is immune to the longitudinal relaxation, i.e., ε2
A = 0

or α = 0, the entanglement will not die at a finite time but will
disappear at infinite time due to the transverse relaxation.

V. CONCLUSION

We have utilized the Hamiltonian-ensemble approach as-
sisted by an auxiliary qubit to simulate the longitudinal
relaxation of a single qubit in an open quantum system. Con-
cretely, the auxiliary qubits interacting with the working qubit
are used to simulate the environmental effects. The theoretical
results show that the simulated dynamics of the working qubit
can be described by a real thermalization process. We can
simulate the equilibrium-state distribution at any temperature,
which is determined by the initial state of the auxiliary qubit,
noise fluctuation, and interaction strength. Furthermore, we
simulate the dynamics of two-qubit entanglement initialized
in the maximum-entangled state. We let the first qubit interact
with the auxiliary qubit and relax longitudinally, and let the
second qubit relax transversely. We find that if there is not
longitudinal relaxation on the first qubit but transverse relax-
ation on the second qubit, the entanglement of the system
will disappear when the time approaches infinity. However,
if the longitudinal relaxation exists, no matter whether the
transverse relaxation is present or not, the entanglement of
the two-qubit system will disappear after a finite time. And
the larger the noise fluctuation, the faster the entanglement
will decay.
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APPENDIX: DERIVATION OF THE
ENSEMBLE-AVERAGED

STATE OF THE TWO WORKING QUBITS

The initial state of the three qubits for each realization
reads

ρ(0) = x|ψ1(0)〉〈ψ1(0)| + y|ψ2(0)〉〈ψ2(0)|, (A1)

where

|ψ1(0)〉 = 1√
2
|+〉A2

⊗ (|++〉A1B1
+ |−−〉A1B1

)
,

|ψ2(0)〉 = 1√
2
|−〉A2

⊗ (|++〉A1B1
+ |−−〉A1B1

)
. (A2)

In other words, the two working qubits A1 and B1 are in a
maximum-entangled state, while the auxiliary qubit A2 is in a
mixed state. At time t , |ψ1(0)〉 evolves into the state

|ψ1(t )〉 = η1|+ + +〉A2A1B1
+ η2|− + −〉A2A1B1

+ η3|+ − −〉A2A1B1
, (A3)

where η1 = exp[−i(ωA + εA + ωB + εB)t/2]/
√

2, because
|+ + +〉A2A1B1

is the eigenstate of Ĥε. In the invariant subspace
spanned by the basis {|− + −〉A2A1B1

, |+ − −〉A2A1B1
}, the ef-

fective Hamiltonian can be simplified as

Ĥε = − 1
2 (ωB + εB)I + f (εA)σx. (A4)

And thus the evolution operator Ûε = exp(−iĤεt ) reads

Ûε = [cos( f (εA)t ) − i sin( f (εA)t )σx]e(i/2)(εB+ωB )t . (A5)

Since [η2, η3]T = Ûε[0, 1/
√

2]T , the three coefficients of
|ψ1(t )〉 are explicitly given as

η1 = 1√
2

e−(i/2)(2ωA+ωB+εB )t ,

η2 = −i√
2

e(i/2)(εB+ωB )t sin[ f (εA)t],

η3 = 1√
2

e(i/2)(εB+ωB )t cos[ f (εA)t]. (A6)

Suppose |ψ2(t )〉 can be expanded as

|ψ2(t )〉 = ξ1|− − −〉A2A1B1
+ ξ2|+ − +〉A2A1B1

+ ξ3|− + +〉A2A1B1
. (A7)

Following the above steps, we can obtain

ξ1 = 1√
2

e(i/2)(2ωA+ωB+εB )t ,

ξ2 = −i√
2

e−(i/2)(εB+ωB )t sin[ f (εA)t],

ξ3 = 1√
2

e−(i/2)(εB+ωB )t cos[ f (εA)t]. (A8)
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Because we have solved the quantum dynamics of the
three qubits, by tracing over the auxiliary qubit A2, we
can obtain the reduced density matrix of the two working
qubits ρA1B1 (t ) = TrA2 ρ(t ) in the basis {|+−〉A1B1

, |++〉A1B1
,

|−−〉A1B1
, |−+〉A1B1

} as

ρA1B1 (t ) =

⎛
⎜⎜⎜⎝

a(t ) 0 0 0

0 b(t ) z(t ) 0

0 z∗(t ) c(t ) 0

0 0 0 d (t )

⎞
⎟⎟⎟⎠. (A9)

As in Sec. III, we define the coupling strength as f (εA) =
α(εA − s), where α � 0. The nonvanishing matrix elements
are given by

a(t ) = x

2
γ (t )2,

b(t ) = x

2
+ y

2
[1 − γ (t )2],

c(t ) = y

2
+ x

2
[1 − γ (t )2],

z(t ) = 1

2
ζ (t ) cos[α(εA − s)t],

d (t ) = y

2
γ (t )2, (A10)

where ζ (t ) = exp[−i(ωA + ωB + εB)t], γ (t ) = sin[α(εA −
s)t]. We assume that εA and εB are subject to indepen-
dent Gaussian distributions. After the ensemble average, the
nonvanishing matrix elements of Eq. (A9) are explicitly
given as

a(t ) = x

4

[
1 − cos(2αst )e−2α2ε2

At2]
,

b(t ) = x

2
+ y

4

[
1 + cos(2αst )e−2α2ε2

At2]
,

c(t ) = y

2
+ x

4

[
1 + cos(2αst )e−2α2ε2

At2]
,

z(t ) = 1

2
e−(1/2)ε2

Bt2
e−(i/2)(ωA+ωB )t e−(1/2)ε2

Aα2t2
cos(αst ),

d (t ) = y

4

[
1 − cos(2αst )e−2α2ε2

At2]
. (A11)
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