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Theory of Center-Line Slope in 2D Electronic Spectroscopy
with Static Disorder

Zong-Hao Sun, Yi-Xuan Yao, Qing Ai,* and Yuan-Chung Cheng*

2D electronic spectroscopy (2DES) is a powerful tool for investigating the
dynamics of complex systems. However, analyzing the resulting spectra can
be challenging, and thus may require the use of theoretical modeling
techniques. The center-line slope (CLS) method is one of such approaches,
which aims to extract the time correlation function (TCF) from 2DES with
minimal error. Since static disorder is widely observed in complex systems, it
may be interesting to ask whether the CLS approach still work in the presence
of the static disorder. In this paper, the effect of the static disorder on the TCF
obtained through the CLS method is investigated. It is found that the
steady-state value of the CLS increases monotonically with respect to the
static disorder, which suggests that the amplitude of the static disorder can be
determined using the CLS in the long-time limit. Additionally, as the static
disorder rises, the decay rate of the CLS first decreases to a certain value and
remains at this value until the static disorder is sufficiently large. Afterward,
the CLS begins to fluctuate significantly and thus results in obtaining the
decay rate through the CLS method unreliable. Based on these discoveries,
the authors propose a method to fix the error and obtain the TCF.
The findings may pave the way for obtaining reliable system-bath information
by analyzing 2DES in the practical situations.

1. Introduction

2DES is a powerful spectral technology developed in re-
cent years for analyzing the dynamics of a variety of chem-
ical and biological systems.[1–9] It has high resolution in
both time and frequency domains, and has been success-
fully applied to probing fast dynamics in condensed-matter
systems with exceptional detail. The 2DES is a branch of
the 2D spectroscopy in the visible domain, which is widely
used in the study of photoactive systems including photosyn-
thetic complexes,[10–16] photovoltaics,[17,18] nanocrystalline,[19–21]
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quantum dots and wells,[22–24] and pho-
tosynthetic pathways.[25–28] The nonlinear
broadening, energy transfer, electron-
vibration coupling effects and quantum
coherence effects can be intuitively demon-
strated in the 2DES. Several closely-related
technologies have also been developed,
such as 2D fluorescence spectroscopy[29–31]

and 2D terahertz.[32,33]

In the 2DES experiments, three ultrafast
pulses covering the frequency domain of
interest successively pass the sample. By
controlling the delay times of the pulses, a
photon-echo signal is emitted in the direc-
tion of phase matching after the interaction
between three pulses and the sample. The
photon-echo signal is combined with an-
other local-oscillator signal for heterodyne
detection, which provides the amplified sig-
nal for the quantum dynamics.
The first coherence period 𝜏 is the dura-

tion between the first two pulses. The pop-
ulation period Tw is the duration between
the second and third pulses. The second co-
herence period t is the duration between

the third pulse and the signal. They can be effectively adjusted
by tuning the delay times of the pulses. The electrons are la-
beled by frequency during the first coherence period. Due to the
microscopic events that occur during the population period, the
frequency-labeled electrons may develop to various frequencies,
that is, the spectral diffusion. The final frequencies of the elec-
trons with frequency labels are read out during the second coher-
ence period. By taking the initial frequency which labels the elec-
trons as one axis and the final frequency as the other axis, a 2D
spectrum can be obtained. The detailed information and quan-
tum dynamics of the system can be determined by analyzing the
position, amplitude and shape of the peaks in the 2D spectrum.
2DES contains immense information about the system. It is

crucial how to interpret the spectrum to obtain the required in-
formation. In order to explore the dynamic evolution of the sys-
tem, we focus on extracting the TCF accurately and efficiently
from the 2D spectrum. The TCF provides a key connection be-
tween 2DES photon-echo experiments and microscopic dynam-
ics. Hence, many methods have been developed, such as the
CLS,[34,35] ellipticity and eccentricity.[36,37]

Among methods for extracting information describing the
system-bath interaction, the CLS theory yields reliable TCF and
has been successfully applied to describe 2D infrared vibra-
tional echo spectroscopy and structural dynamics under thermal
equilibrium.[38,39] TheCLS is the slope (the inverse of the slope) of
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the center line that connects the peaks of a series of cuts through
the 2D spectrum parallel to the 𝜔t (𝜔𝜏 ) axis. As spectral diffusion
progresses, the CLS decays from a maximum of 1 to 0. The CLS
is used as the TCF to study the ultrafast dynamics of the system.
The CLS theory is developed based on the theory of optical re-

sponse function.[40,41] In the derivation, the TCF is assumed as a
real function, and many approximation methods have been ap-
plied, such as the short-time approximation, which may signifi-
cantly deviate from the practical situation.
In order to apply the CLSmethodmore accurately to real-world

situations, numerous studies have been conducted. Šanda and
colleagues investigated the relationship between the CLS shapes
and solvent effects, vibrational dissipation, and peak positions.[42]

Hoffman and co-workers attempted to determine TCF param-
eters quickly and accurately using artificial neural networks.[43]

However, static disorder may be a significant factor influencing
spectral features, particularly in complex systems. The impact of
static disorder on the interpretation and analysis of 2DES war-
rants further investigation.
In natural photosynthetic complexes, the TCF is complex and

can only be considered as a real function at the high-temperature
limit.[40] As a result, it might be crucial to test the reliability of the
CLS approach when the TCF is a complex function. On the other
hand, due to the heterogeneity, the inhomogeneous broadening
is introduced due to the static disorder and it may effectively pro-
long the coherence signals in the 2DES.[44,45] Therefore, it might
be important to investigate the effects of the static disorder on the
CLS. Interestingly, it is found that within a certain range of the
static disorder, the performance of the CLS approach has been
improved in extracting the TCF.
This paper is organized as follows. In the next section, we give

a brief introduction to the optical response function for 2DES
and the CLS method. In Section 2, we examine the performance
of the CLS method at low temperatures. Using complex TCF, we
generate 2D spectra at 77 and 298 K, respectively. In Section 3, we
calculate 2DES with the static disorder and investigate its impact
on the CLS method. In Section 4, we summarize our main find-
ings. In Supporting Information, we provide a brief derivation
to the probability of the energy gap in the presence of the static
disorder. In Supporting Information, we also derive the relation
between the real and imaginary parts of the TCF.

2. CLS at Low Temperature

In the original CLS approach, a real function is assumed for the
TCF. It can be viewed as the high-temperature limit of the natural
photosynthetic complexes. In this section, we will test the relia-
bility of the CLS approach at a low temperature, that is, a complex
function[46] C(t) = C′(t) − iC′′(t), where

C′(t) = 1
𝜋 ∫

∞

0
d𝜔 J(𝜔) coth

(
𝛽𝜔

2

)
cos(𝜔t)

C′′(t) = 1
𝜋 ∫

∞

0
d𝜔 J(𝜔) sin(𝜔t)

J(𝜔) = 𝛾c𝜔 exp(−𝜔∕𝜔c)

(1)

Table 1. Parameters of the TCF at T = 298 K for an Ohmic spectral density
with cutoff 40 cm−1 and 𝛾c = 1.

TCF 𝛼k (×102fs−2) Re(𝛾k) (×10−3fs−1) Im(𝛾k) (×10−3fs−1)

C′(t) 65.24 9.183 0

C′(t) 9.001 2.336 0

C′(t) −10.56 28.62 19.17

C′(t) −10.56 28.62 −19.17

C′′(t) −0.9246 6.374 −5.870

C′′(t) −0.9246 6.374 5.870

C′′(t) 2.655 20.76 −20.48

C′′(t) 2.655 20.76 20.48

C′′(t) −3.717 5.360 0

Table 2. Parameters of the TCF at T = 77 K for an Ohmic spectral density
with cutoff 40 cm−1, and 𝛾c = 1.

TCF 𝛼k (×103fs−2) Re(𝛾k) (×10−3fs−1) Im(𝛾k) (×10−5fs−1)

C′(t) 11.82 17.51 −2.777

C′(t) 11.82 17.51 2.777

C′(t) −22.64 18.40 0

C′(t) 0.4852 3.331 0

C′′(t) −2.879 23.77 −3.043

C′′(t) −2.879 23.77 3.043

C′′(t) 3.022 24.08 −781.9

C′′(t) 3.022 24.08 781.9

C′′(t) −0.2854 5.595 0

Here, the relationship between the TCF and the Ohmic spectral
density is provided, where 𝛾c characterizes the system-bath cou-
pling strength. The cutoff frequency 𝜔c is introduced to limit the
influence of high-frequency vibrations, while 𝛽 = 1∕(kBT) repre-
sents the inverse temperature. Alternatively, the real and imagi-
nary parts of the TCF are given as

C′(t) =
∑
k

𝛼ke
−𝛾kt

C′′(t) =
∑
k

𝛼ke
−𝛾kt

(2)

Table 1 shows the parameters of the complex function when
the temperature is 298 K. The real and imaginary parts of the
TCF should satisfy the corresponding relation Equation (8). We
also consider the case of a low temperature, for example, 77 K,
with parameters given in Table 2.
As schematically depicted in Figure 1, we use a configuration

of a dimer with coupling strength J for calculation, where the
two-exciton state has been neglected. In Figure 2, we show the
diagonal peaks with lower energy in the absorptive 2DES gener-
ated from the response function. The red (blue) solid lines in the
diagram are the center lines for 𝜔t (𝜔𝜏 ). In the neighborhood of
the peak, these two lines are very close to a straight line, and their
slopes are the CLS. In order to obtain the behavior of the TCF in
the time domain, we calculate the 2DES for a series of waiting
times Tw. With the increase of Tw, the shape of the peak changes
from ellipse to circle due to the spectral diffusion.[35] Moreover, in
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Figure 1. The dimer system with coupling strength J, where 𝜖1 =
15 800 cm−1, 𝛿 ≡ 𝜖2 − 𝜖1 = 400 cm−1 is the energy gap between |e2⟩ and|e1⟩. When there is resonant coupling J = 150 cm−1 between |e2⟩ and |e1⟩,
the energy gap has been widened as Δ =

√
𝛿2 + 4J2.

the long-time limit, the two center lines tend to be parallel to the
two coordinate axes respectively. According to the CLS approach,
since the slopes of the two lines gradually approach 0, the TCF
eventually vanishes.
Notice that when it is far away from the peak, the center line

significantly deviates from a straight line. In order to effectively
obtain the TCF, we restrict the center line to the full width at
the half maximum (FWHM) of the peak and numerically fit it to
obtain the CLS. The relation between the CLS and the waiting
time Tw is shown in Figure 3, where the CLS is normalized by
its value at Tw = 0 fs. Notice that the CLS𝜔t and CLS𝜔𝜏 coincide
with each other for the whole parameter regime. When the tem-
perature is high, that is, T = 298 K in Figure 3a, the CLS decays
faster than the TCF at the initial stage, while it will be surpassed
around Tw = 200 fs. However, when the temperature is lowered
to T = 77 K in Figure 3b, the situation becomes subtle although
the tendency remains almost the same. The CLS𝜔t and CLS𝜔𝜏

begin to move apart after Tw = 500 fs. The underlying physical
mechanism will be discussed in the next section.

3. The Effect of Static Disorder on the CLS

As shown in Figure 1, in order to consider the effects of the static
disorder, we calculate the 2DES with the level spacing 𝛿 charac-
terized by a Gaussian distribution with mean zero and standard
deviation 𝜎. Assuming there is electronic coupling J between the
two levels, the probability of the energy gap Δ between the two
eigenstates as

P(Δ) =
exp

(
−

(
√
Δ2−J2−𝜔0

eg)
2

4𝜎2D

)
+ exp

(
−

(
√
Δ2−J2+𝜔0

eg)
2

4𝜎2D

)
√
4𝜋𝜎DΔ−1

√
Δ2 − J2

(3)

which is derived in Supporting Information. In the paper, we use
the 128-point Gauss–Hermite quadrature method[47] to calculate
the spectra for each waiting time Tw.
For static disorder in the range 10–200 cm−1, we calculate the

2DES and obtain the corresponding CLS. We find that the 2DES
is modifiedmainly in three aspects due to the static disorder, that
is, the shape of the spectral peak, the steady-state value of the CLS
in the long-time limit and the decay rate 𝛾 of the CLS.

3.1. The Shape of Spectral Peak

In Figure 4, we show the 2DES ofTw = 10 fs for three typical static
disorders. Compared with Figure 2b, the peak has been stretched
along the diagonal line as a result of the static disorder. With the
increase of the static disorder, the stretching effect becomesmore
significant. Notice that when the static disorder is greater than
130 cm−1, a series of smaller peaks with lower height emerge in
the diagonal line and the center line appears wavy, which is signif-
icantly different from a straight line. This effect will significantly
affect the acquisition of the CLS, making it difficult to obtain the
TCF. It is worth noting that the impact of the static disorder is
greater at the case that T = 77 K compared to T = 298 K. For ex-
ample, at 𝜎 = 130 cm−1, the spectrum at T = 298 K is affected by
the static disorder causing the peak shape to be stretched along
the diagonal direction. However, the stretching effect at T = 77 K
is more intense, splitting into multiple smaller peaks along the
diagonal direction. A similar effect does not appear in the 298 K
graph until 𝜎 increases to 190 cm−1.
We remark that the emergency of the lower peaks is due to

the finite order of the Gauss–Hermit method, which is utilized
to simulate the static disorder. This defect can be overcome by
increasing the order and thus results in raising the computa-
tional cost.

3.2. The Steady-State Value of the CLS

Another effect of the static disorder is reflected in the steady-state
value of the CLS in long-time limit. In the absence of the static
disorder, the steady-state value of the CLS goes to 0, which is the
same as the behavior of the TCF. However, we find that when the
static disorder is introduced, the CLS at the steady state no longer
vanishes. This steady-state value increases when the amplitude of
the static disorder is enlarged.
Figure 5 shows the change of the steady-state value with the

static disorder.We find that there is amonotonic relation between
the steady-state value of the CLS and the amplitude of the static
disorder. As the latter increases, the steady-state value of the CLS
increases rapidly. When 𝛿 raises to 50 cm−1, the CLS ultimately
decays only to≈70% of its initial value. At a temperature of 298 K,
the steady-state values of CLS𝜔𝜏 and CLS𝜔t overlap with each
other in whole parameter regime, as shown in Figure 5a. How-
ever, at a lower temperature of 77 K as shown in Figure 5b, when
𝜎 exceeds 140= cm−1, an abnormal fluctuation in the steady-state
values of CLS𝜔𝜏 and CLS𝜔t appears at 77 K. We speculate that
this is due to the excessive impact of static disorder on the peak
shape, causing the CLS method to fail to extract information cor-
rectly. In comparison to the situation at 77 K, at 298 K a similar
fluctuation does not appear in Figure 5a.

3.3. The Decay Rate of the CLS

The static disorder also affects the decay rate of the CLS. For a
group of spectra with different T , we perform a single exponen-
tial fitting, that is, in the form of ae−𝛾t + b, to obtain the decay
rate 𝛾 of the CLS, which is very crucial in studying open quan-
tum dynamics. The actual TCF, as shown in Equation (2), is the
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Figure 2. Absorptive 2DES simulated from the response function at the waiting time a,d) Tw = 10 fs; b,e) 100 fs; and c,f) 200 fs. The red (blue) solid
line is the center line for 𝜔t (𝜔𝜏 ). The sub-figures (a– c) are simulated with T = 298 K, while (d–f) with T = 77 K.

sum of multiple exponential functions, but fitting data with mul-
tiple exponential functions may result in many possible sets of
fitting results due to too many parameters, which is not helpful
in obtaining information about the interaction between the sys-
tem and the environment. As vonNeumann said,[48,49] “With four
parameters I can fit an elephant, and with five I can make him
wiggle his trunk.” Therefore, we use a single exponential func-
tion for fitting, which may not perfectly match the data, but can
capture the main decay component of the TCF and provide the
dominant interaction component between the system and the en-
vironment.

Figure 6 shows the decay rate of the CLS under different static
disorders, where the black dashed line is the decay rate of the
TCF. We find that at both temperatures, that is, 298 and 77 K,
the decay rate of the CLS exhibits a similar relation with the am-
plitude of static disorder. After the static disorder emerges, as it
increases, the decay rate of the CLS decreases, causing the decay
to slow down. When the decay rate decreases to a certain value,
it stops decreasing and remains as a constant regardless of the
increasing static disorder. In Figure 6a, as the static disorder is
larger than about 130 cm−1, the decay rate begins to fluctuate.
When 𝜎 increases to nearly 200 cm−1, the CLS theory fails to

Figure 3. The dependence of the CLS on the waiting time Tw, where CLS is simulated at a) T = 298 K, b) T = 77 K. The black line is the real part of the
TCF.
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Figure 4. Absorptive 2DES simulated with the static disorder a,d) 𝜎 = 50 cm−1, b,e) 𝜎 = 130 cm−1, and c,f) 𝜎 = 190 cm−1. The sub-figures (a– c) are
simulated at T = 298 K, while (d–f) at T = 77 K.

extract the TCF, because additional peak emerge due to the large
static disorder, as shown in Figure 4c,f. In Figure 6b, a signifi-
cant fluctuation appears when the static disorder is greater than
80 cm−1, which is more affected than in the case of 298 K.

4. Conclusion

To summarize the main findings of the paper, it is shown that
the static disorder has a significant impact on the reliability of the
CLS method for obtaining the TCF from 2DES. Specifically, we
find that the presence of the static disorder leads to an increase
in the steady-state value of the CLS and an inaccurate decay rate
of the CLS, as compared to the TCF.

We show that there is amonotonic relation between the steady-
state value of the CLS and the amplitude of the static disorder. As
the static disorder increases, the steady-state value of the CLS also
increases, as shown in Figure 5. According to the simulated data
at 77 and 298 K, the relation between the steady-state value and
the static disorder is very similar. Due to this monotonic relation,
it is possible to obtain the amplitude of the static disorder of the
system through the CLS approach.
We also find that the amplitude of the static disorder affects the

decay rate of the CLS. When using the CLS method to extract the
TCF in the laboratory, the presence of the static disorder can lead
to errors in the decay rate, especially in the case with large static
disorders. Since we have the correspondent error of the decay

Figure 5. The steady-state value of the CLS at a) T = 298 K, b) T = 77 K varies with the amplitude of the static disorder. The red (blue) line represents
the steady-state value of CLS𝜔𝜏 (CLS𝜔t).
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Figure 6. The decay rate of CLS at a) T = 298 K, b) T = 77 K varies with the amplitude of the static disorder. The red (blue) line represents the change
of CLS𝜔𝜏 (CLS𝜔t). The black dotted line is the decay rate of the TCF.

rate of the CLS and the amplitude of the static disorder, confer
Figure 6, we propose correcting the decay rate of the CLS to attain
the decay rate of the TCF.
Our work can provide a correction for the application of the

CLS method in actual experiments, where we define the correc-
tionΔ𝛾 = 𝛾TCF − 𝛾CLS. 𝛾TCF and 𝛾CLS correspond to the decay rates
of the TCF and CLS, respectively. In practice, by summing up the
obtained decay rate 𝛾 with corresponding correction Δ𝛾 accord-
ing to the static disorder 𝜎, a result which is much closer to that
of the TCF can be attained. The corrections for different static
disorders are presented in Tables 3 and 4.

Table 3. Correction of the decay rate at 298 K.

𝜎 [cm−1] Δ𝛾t (×10−4fs−1) Δ𝛾𝜏 (×10−4fs−1)

0 −4.855 −4.367

10 −4.723 −4.055

20 −3.380 −3.032

30 −2.354 −1.694

40 −1.379 −0.630

50 −0.610 0.030

60 −0.123 0.520

70 0.236 0.986

80 0.714 1.176

90 0.424 0.939

100 1.956 2.737

110 2.664 3.365

120 4.011 4.604

130 5.414 5.740

140 3.823 4.857

150 2.318 2.806

160 2.208 3.432

170 3.139 3.520

180 4.002 3.275

5. Experimental Section
The 2DES was obtained from the double Fourier transform of the third-

order macroscopic polarization signal generated by three laser pulses act-
ing on the system. The 2DES can be theoretically calculated by the re-
sponse function approach. Afterward, the center line of the 2DES was ob-
tained and the time correlation functionwas reproduced by the slope of the
center line. Hereafter, the two approaches are respectively summarized.

Response Function Theory: Response function is the most commonly-
used method for calculating the 2DES, which was developed by S.
Mukamel and his collaborators.[40] The 2D spectroscopy can be deter-
mined by taking the real part of the Fourier transform of the nonlinear
third-order response functions as

S(3)(t3, t2, t1) =
(
−i
ℏ

)3

×

⟨𝜇(t3)[𝜇(t2), [𝜇(t1), [𝜇(0), 𝜌(−∞)]]]⟩ (4)
where ℏ is the reduced Planck constant, 𝜇(t) is the dipole operator
in the interaction picture, and 𝜌(−∞) is the density matrix at thermal

Table 4. Correction of the decay rate at 77 K.

𝜎 [cm−1] Δ𝛾t (×10−3fs−1) Δ𝛾𝜏 (×10−3fs−1)

0 0.977 0.889

10 1.199 1.258

20 1.389 1.575

30 1.532 1.682

40 1.520 1.689

50 1.837 1.652

60 1.686 1.968

70 2.023 1.891

80 2.110 2.341

90 1.624 2.034

100 0.487 0.756

110 0.658 1.288

120 3.569 2.338

130 5.167 4.732
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equilibrium. It can be expanded into four terms and their complex con-
jugates as

R1(t3, t2, t1)=||𝜇01||4e−i𝜔(t+𝜏)
× e−g(𝜏)−g(Tw)−g(t)+g(𝜏+Tw)+g(Tw+t)−g(𝜏+Tw+t)

R2(t3, t2, t1)=||𝜇01||4e−i𝜔(t−𝜏)
× e−g(𝜏)+g(Tw)−g(t)−g(𝜏+Tw)−g(Tw+t)+g(𝜏+Tw+t)

R3(t3, t2, t1)=||𝜇01||4e−i𝜔(t−𝜏)
× e−g(𝜏)+g(Tw)−g(t)−g(𝜏+Tw)−g(Tw+t)+g(𝜏+Tw+t)

R4(t3, t2, t1)=||𝜇01||4e−i𝜔(t+𝜏)
× e−g(𝜏)−g(Tw)−g(t)+g(𝜏+Tw)+g(Tw+t)−g(𝜏+Tw+t)

(5)

where t1 = 𝜏, t2 = 𝜏 + Tw, and t3 = 𝜏 + Tw + t are the delay times,𝜔 is the
transition frequency between the ground state |0⟩ and the excited state |1⟩,
𝜇01 = ⟨0|𝜇|1⟩ is the transition dipole between the two states. And g(t) is
the line-shape function,[40] which is obtained from the double integration
of the TCF as

g(t) = 1
2 ∫

t

0
dt′ ∫

t′

0
dt′′C(t′′) (6)

Generally, the TCF reads[40]

C(t) ≡ ∫ d𝜔J(𝜔)
[
coth

(
𝛽𝜔

2

)
cos(𝜔t) − i sin(𝜔t)

]
≡ C′(t) + iC′′(t) (7)

where C′(t) and C′′(t) are respectively the real and imaginary parts of the
TCF, J(𝜔) is the spectral density characterizing the system-bath interaction,
𝛽 = 1∕kBT is the inverse temperature with kB and T being the Boltzmann
constant and the temperature, respectively. The real and imaginary parts of
the TCF have corresponding relations. When we have the imaginary part,
we also know the real part and vice versa, that is

C′′(t) = tan
(
𝛽ℏ

2
d
dt

)
C′(t) (8)

which will be proven in Supporting Information.
Center-Line Slope: In the approach of the center-line slope, two ap-

proximations were made to obtain the TCF, that is, C(t) = 𝛿(t)∕T2 +
Δ2 exp(−t∕𝜏d).[34] First of all, the homogeneous line width was set to
zero, that is, 1∕T2 = 0. This approximation ensured that the motionally-
narrowed component of C(t) was no longer present. In addition, under
short-time approximation, the line-shape function was expanded to the
second order of the coherence times, that is, 𝜏 and t, as

g(t) = Δ2𝜏dt + Δ2𝜏2(e−t∕𝜏d − 1) ≈ Δ2t2

2
(9)

where the short-time approximation assumes slow spectral dispersion,
that is, Δ𝜏d ≫ 1.

Subsequently, the absorptive line shape can be written as

Rg(𝜔𝜏 ,Tw,𝜔t) =
2𝜋√

C2(0) − C2(Tw)

× exp

(
−
C(0)(𝜔2

t + 𝜔2
𝜏
) − 2C(Tw)𝜔𝜏𝜔t

2(C2(0) − C2(Tw))

)
(10)

For a specific 𝜔t, we can obtain the maximum by calculating the derivative
with respect to 𝜔𝜏 as

𝜕Rg(𝜔𝜏 , Tw,𝜔t)
𝜕𝜔𝜏

|𝜔𝜏=𝜔max
𝜏

=
−C(0)𝜔𝜏 + C(Tw)𝜔t

C2(0) − C2(Tw)
× Rg(𝜔𝜏 , Tw,𝜔t) = 0 (11)

The center line is the line connecting the maxima for different 𝜔t. The CLS
is the slope of the center line, that is

CLS𝜔t(Tw) =
d𝜔max

𝜏
(𝜔t)

d𝜔t
=

C(Tw)
C(0)

(12)

Alternatively, the CLS can be obtained in a similar way as

CLS𝜔𝜏 (Tw) =
d𝜔max

t (𝜔𝜏 )

d𝜔𝜏

=
C(Tw)
C(0)

(13)

where the maximum is determined by

𝜕Rg(𝜔𝜏 , Tw,𝜔t)
𝜕𝜔t

|𝜔t=𝜔max
t

=
−C(0)𝜔t + C(Tw)𝜔𝜏

C2(0) − C2(Tw)
× Rg(𝜔𝜏 , Tw,𝜔t) = 0. (14)

Note that the CLS method is based on the response function, which
treats all excitation pulses as delta pulses. Furthermore, several approxi-
mations were employed, such as the short-time approximation, omitting
the homogeneous term and assuming the TCF to be real. Therefore, it is
quite natural to question the validity of the CLS approach under a more
realistic condition, for example, employing it in the 2DES in the visible-
frequency domain at low temperatures.
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