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Quantum metrology with one auxiliary particle in a correlated bath and its quantum simulation
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In realistic metrology, entangled probes are more sensitive to noise, especially for a correlated environment.
The precision of parameter estimation with entangled probes is even lower than that of the unentangled ones in
a correlated environment. In this paper we propose a measurement scheme with only one auxiliary qubit, which
can selectively offset the impact of environmental noise under this situation. We analyze the estimation precision
of our scheme and find out that it approaches the Heisenberg limit when prepared in a proper auxiliary state. We
further discuss employing auxiliary states to improve the precision of measurement in other environment models
such as a partially correlated environment. In order to verify our scheme, we apply a recently developed quantum
algorithm to simulate the quantum dynamics of our proposal and show that it outperforms the other proposals
with less resources.
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I. INTRODUCTION

Quantum metrology employs quantum entanglement and
coherence to achieve an ultrahigh precision for the estimation
of an unknown parameter [1,2]. It has become an indispens-
able element of satellite navigation, aerospace measurement
and control, mobile phones, and computer chip processing.
This opens a broad range of valuable applications of quantum
mechanics, in addition to quantum information processing
[3], photosynthetic exciton energy transfer [4,5], avian mag-
netoreception [4,6–8], and quantum metamaterial [9–12]. As
a result of the central-limit theorem, the estimated precision
of an unknown quantity critically depends on the number of
resources available for the measurement. One of the primary
goals of quantum metrology is to enhance the precision of
resolution with limited resources. An enhanced resolution can
be achieved if quantum entanglement is used to correlate the
probes before making them interact with the system to be
measured [13,14]. In quantum metrology, two-level quantum
systems, i.e., qubits like electronic and nuclear spins, are
widely considered as quantum probes [2]. Taking advantage
of n entangled qubits with linear couplings, one can attain
the Heisenberg limit (HL), which scales as n−1, being the
ultimate limit in precision set by quantum mechanics. And
this result has been demonstrated experimentally [15,16]. On
the contrary, when using unentangled qubits with linear cou-
plings, one can only reach the standard quantum limit (SQL),
which scales as n−1/2. Obviously, the use of entanglement can
significantly enhance the precision when n is large.
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In realistic scenarios for experiments, quantum probes are
inevitably affected by noise. The achievable precision de-
creases due to the decoherence. As known to all, the quantum
dynamics of open quantum systems are usually classified into
Markovian and non-Markovian [17–22]. When the system-
bath couplings are relatively large, or the number of degrees of
freedom in the environment is not sufficiently large, e.g., natu-
ral photosynthetic complexes and NV centers in diamond, the
open quantum systems are subject to non-Markovian quantum
dynamics [4,23]. Using entangled probes in a non-Markovian
quantum dynamics allows for a higher measurement precision
than that in a Markovian quantum dynamics, which scales
as n−3/4 [24,25]. A bound state outside the continuum can
improve the precision of measurement [26,27]. On the other
hand, when particles interact with a correlated environment,
e.g., nuclear spins in a molecule, the decoherence rate per
particle will increase linearly with the number of particles,
i.e., superdecoherence [28,29]. In this regime, utilizing entan-
gled probes will no longer outperform unentangled ones, no
matter whether the open quantum dynamics is Markovian or
non-Markovian.

In order to overcome decoherence in an uncorrelated bath,
logical states are introduced to establish a decoherence-free
subspace [30–32]. However, since N logical qubits require
n = 2N physical qubits, it doubles the number of valuable
resources used per experiment. In order to effectively
reduce the usage of resources, here we propose a measurement
scheme with only one auxiliary qubit in a correlated bath.
Using such a well-designed auxiliary particle in quantum
metrology can selectively offset the impact of noise in a
correlated environment. Comparing with previous proposals,
we show that although we use less resources, we can still
approach the HL when preparing proper auxiliary states.

On the other hand, although the theoretical scheme uti-
lizing entanglement in a non-Markovian environment is
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appealing, it might be difficult to experimentally verify it
since it critically requires the homogeneity of the qubits. For
example, for NV centers in diamond, different spins mani-
fest different Zeeman energies and decoherence rates in the
same environment due to the inhomogeneous gyromagnetic
ratios. Recently, based on the bath-engineering technique
[33,34] and the gradient ascent pulse engineering (GRAPE)
algorithm [35,36], we theoretically proposed and experimen-
tally demonstrated that the open quantum dynamics with an
arbitrary Hamiltonian and spectral density can be exactly and
efficiently simulated [37,38]. Thus, based on this algorithm,
we show how to verify that our scheme can make the esti-
mation precision to achieve the HL in a quantum simulation
experiment [39,40].

This paper is organized as follows: Our measurement
scheme and its quantum dynamics for quantum metrology in a
correlated bath are introduced in the next section. Specifically,
we offer an example of magnetic-field sensing utilizing our
measurement scheme. Then, in Sec. III we apply a recently
developed quantum algorithm to simulate our measurement
scheme with an auxiliary qubit and show that it can approach
the HL. In the Appendix we provide a brief introduction for
the GRAPE algorithm, which is an essential component in the
quantum simulation approach [37,38].

II. MODEL AND DYNAMICS

A. Dynamics of n-qubit decoherence

The quantum dynamics of open system is described by the
well-known spin-boson model [41,42]. Since the timescale of
dephasing is generally much smaller than that of longitudinal
relaxation, we consider the pure-dephasing dynamics for sim-
plicity. The spin-boson Hamiltonian of n qubits coupled to a
common bath can be written as [17,43–45]

H = 1

2
h̄ω0

n∑
i=1

σ (i)
z +

∑
k

h̄ωkb†
kbk

+
n∑

i=1

σ (i)
z

∑
k

h̄g(i)
k (b†

k + bk ). (1)

The system Hamiltonian is HS = h̄ω0
∑n

i=1 σ (i)
z /2, and the

bath Hamiltonian is HB = ∑
k h̄ωkb†

kbk , and the interaction
Hamiltonian is HI = ∑n

i=1 σ (i)
z

∑
k h̄g(i)

k (b†
k + bk ), where ω0 is

the energy separation between the ground and excited states,
b†

k (bk) is the creation (annihilation) bath operator, gk is the
coupling constant between the qubit and kth mode of bath,
which is assumed to be real for simplicity.

The interaction Hamiltonian is the product of the system
operators and the bath operators, i.e., HI = ∑n

i=1 siBi, with
si = σ (i)

z and Bi = ∑
k h̄g(i)

k (b†
k + bk ). We decompose the sys-

tem operator si into several parts in the eigenspace {|ε〉i}
as si = ∑

ω si(ω)|ε〉i〈ε′| with si(ω) = ∑
ε′−ε=ω〈ε|si|ε′〉i. The

summation in si(ω) is extended over all energy eigenvalues
ε and ε′ of HS with a fixed energy difference of ω [43,46].
Because si = σ (i)

z , we have si(ω0) = si(−ω0) = 0 and si(0) =
∓1 for |0〉i and |1〉i, respectively. Introducing these eigen-
operator decompositions, the Bloch-Redfield equation can be

rewritten as [42]

ρ̇= i

h̄
[ρ, HS] + 1

h̄2

n∑
i, j=1

Di j (0, t )
(
σ ( j)

z ρσ (i)
z − 1

2

{
σ (i)

z σ ( j)
z , ρ

})
,

(2)

where Di j (ω, t ) = ∫ t
0 dτ exp(iωτ )〈B̃i(τ )B̃ j (0)〉 are the spec-

tral functions, which define both temporal and spatial correla-
tions of the pure-dephasing noise environment [47]. B̃i(τ ) =
h̄g(i)

k [b†
k exp(iωkτ ) + bk exp(−iωkτ )] are the operators of en-

vironment in the interaction picture, and 〈B̃i(τ )B̃ j (0)〉 are the
correlation functions, i.e.,

〈B̃i(τ )B̃ j (0)〉 = h̄2
∑

k

g(i)
k g( j)

k [2n(ωk, T ) cos ωkτ + e−iωkτ ].

(3)

Thus the spectral functions are explicitly given as

Di j (ω, t ) = h̄2
∑

k

g(i)
k g( j)

k [2n(ωk, T )
sin ωkt

ωk

+ 1 − e−iωkt

iωk
]|ωk=ω, (4)

where n(ωk, T ) = 〈b†
kbk〉 denotes the average occupation

number of mode k at temperature T . The real part of Di j (0, t )
causes dephasing, while its imaginary part corresponds to the
Lamb shift [43]. Let Di j (0, t ) = 1

2Ci j (0, t ) + iFi j (0, t ), and

HLS = ∑n
i, j=1 Fi j (0, t )σ (i)

z σ
( j)
z is the Lamb-shift Hamiltonian.

Thus Eq. (2) is rewritten as

ρ̇ = i

h̄
[ρ, HS + HLS] + 1

2h̄2

n∑
i, j=1

Ci j (0, t )

(
σ ( j)

z ρσ (i)
z

− 1

2

{
σ (i)

z σ ( j)
z , ρ

})
. (5)

For n = 1, since the total Hamiltonian is H = h̄ω0σz/2 +∑
k h̄ωkb†

kbk + σz
∑

k h̄gk (b†
k + bk ), Eq. (5) is simplified as

ρ̇ = i

h̄

[
ρ,

1

2
h̄ω0σz

]
+ 1

2h̄2 C(0, t )(σzρσz − ρ), (6)

where the single-qubit dephasing rate is given by γ (t ) =
C(0, t )/h̄2.

However, the n-qubit dephasing rate varies with the envi-
ronmental model. For simplicity, we assume that g(i)

k = g( j)
k =

gk . When n qubits are in an uncorrelated environment, e.g.,
the distance between the qubits are far beyond the correlation
length of the environment [43], we can neglect all spatial
correlations of the bath, i.e., Ci j (0, t ) = h̄2γ (t )δi j . Hence the
n-qubit dephasing rate is

γn(t ) =
n∑

i, j=1

Ci, j (0, t )/h̄2 = nγ (t ). (7)

In contrast, when n qubits are in a correlated bath, i.e., the
correlation length of the environment is much longer than
the qubits’ spatial separation, the n-qubit dephasing rate is n2

times that of single qubit, i.e.,

γn(t ) = n2γ (t ), (8)
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resulting from Ci j (0, t ) = h̄2γ (t ) for all i and j. This phe-
nomenon is called superdecoherence, mainly due to collective
entanglement between qubits and the environment [48].

B. Quantum metrology under superdecoherence

In quantum metrology, using entangled probes can
obtain an increase in precision when assuming a fully
coherent evolution, while in realistic scenario, there is always
decoherence caused by environmental noise. The optimal
precision with entangled probes under decoherence was
first analyzed in a Markovian environment [49] and further
discussed in a non-Markovian environment [25]. The best
resolution in the estimation was obtained with a given
number of particles n and a total duration of experiment
T , i.e., nT/t being the actual number of experiment for
n uncorrelated probes, and T/t being the actual number
of experiment for n entangled probes. Consider the
Ramsey interferometer [25,49]. The entangled probes are
prepared in an n-qubit GHZ state, (|0〉⊗n + |1〉⊗n)/

√
2,

and then evolve freely for a duration t . In the ideal
case, we have (|0〉⊗n + exp(−inφt )|1〉⊗n)/

√
2, where φ

is the parameter to be estimated. In realistic Ramsey
interferometry experiments, h̄φ is the energy splitting
caused by an external field, e.g., the Zeeman effect and
Stark effect. However, in the presence of dephasing noise,
the final state becomes {|0〉〈0|⊗n + exp[−inφt − 
n(t )]
|0〉〈1|⊗n + exp[inφt − 
n(t )]|1〉〈0|⊗n + |1〉〈1|⊗n}/2, with

n(t ) = ∫ t

0 dτγn(τ ), and γn(t ) being the dephasing rate of
n qubits. After a π/2 pulse, the probability of finding these
probes in the initial state reads

P = 1

2

[
1 + cos(nφt )e−
n (t )

]
. (9)

The uncertainty of the measurement can be calculated as

δφ2 = 1

(T/t )F (φ)
, (10)

where the Fisher information [46,50] is

F (φ) ≡ 1

P(1 − P)

(
∂P

∂φ

)2

= t2 sin2(nφt )e−2
n (t )

1 − cos2(nφt )e−2
n (t )
. (11)

When the entangled probes are in an uncorrelated environ-
ment, we can obtain 
n(t ) = n

∫ t
0 dτγ (τ ) = n
(t ), where

γ (t ) and 
(t ) are respectively the dephasing rate and decoher-
ence factor for a single qubit. Thus the uncertainty is explicitly
written as [25,49]

δφ2 = 1 − cos2 (nφt )e−2n
(t )

n2T t sin2 (nφt )e−2n
(t )
. (12)

In order to attain the best precision, it is necessary to optimize
this expression of uncertainty against the duration of each
single measurement t . The best interrogation time satisfies
nφte = kπ/2 with odd k and 2nt d
(t )

dt |t=te= 1 [25], and thus
yields

δφ2 |e= 1

n2T te
e2n
(te ), (13)

where the subscript e indicates that the entangled probes
are used.

TABLE I. The relative parameter resolution r varies with differ-
ent dephasing dynamics.

Uncorrelated environment Correlated environment

Markovian r = 1 r = n−1/4

Non-Markovian r = n1/4 r = 1

As shown in the previous section, when the entangled
probes are in a correlated environment, the decay rate is
proportional to the square of the number of qubits, i.e., the
superdecoherence [28,48,51,52]. As a result, the superdeco-
herence of the probes will modify the probability as

P = 1

2
[1 + cos (nφt )e−n2
(t )]. (14)

The uncertainty of parameter φ reads

δφ2|e = 1 − cos2 (nφt )e−2n2
(t )

n2T t sin2 (nφt )e−2n2
(t )
. (15)

By minimizing δφ2|e, i.e., requiring that nφte = kπ/2 with
odd k and 2n2t d
(t )

dt |t=te= 1, we have

δφ2|e = 1

n2T te
e2n2
(te ). (16)

When utilizing unentangled probes, the uncertainty of
the parameter is δφ2 |u= exp[2
(tu)]/nT tu, and the best in-
terrogation time is given by φtu = kπ/2 with odd k and
2t d
(t )

dt |t=tu= 1 [25]. Following Ref. [25], we define

r = δφ|u
δφ|e , (17)

where |δφ|e and |δφ|u are the standard deviation of the es-
timated parameter φ when using entangled and unentangled
probes, respectively. Here r characterizes the improved pre-
cision of measurement for using entangled probes instead of
unentangled ones. For entangled probes in an uncorrelated
environment, we obtain r2 = n(te/tu) exp[2
(tu) − 2n
(te)],
while for entangled probes in a correlated environment,
we have r2 = n(te/tu) exp[2
(tu) − 2n2
(te)]. Obviously, r
changes along with the dependence of function 
(t ) on
time [25], i.e., the dynamics of decoherence. For example,

(t ) ∝ t corresponds to the Markovian dephasing dynamics.
When 
(t ) has a quadratic behavior, i.e., 
(t ) ∝ t2, it is the
non-Markovian dephasing dynamics, which is actually the
quantum Zeno dynamics [31,53–55]. Hereafter we just fol-
low the terminology in Ref. [25]. In Table I we analyze the
relative resolution of the parameter r in different situations,
i.e., Markovian vs non-Markovian dynamics and correlated
vs uncorrelated environments. We can learn from Table I that
using entangled probes cannot improve the precision in the
presence of superdecoherence because r � 1 for n � 2.

C. Quantum metrology using an auxiliary particle

As shown in the previous section, on account of su-
perdecoherence, the best precision with entangled probes
will no longer be superior to that with unentangled ones.
Previous works [30,31] introduced logical states which are
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FIG. 1. Schematic for N qubits and one auxiliary qubit in a corre-
lated bath. An (N + 1) qubit entangled system, initially at |(0)〉 =
(|1〉a|0〉⊗N + |0〉a|1〉⊗N )/

√
2, interacts with a correlated bath. The

coupling constants between the qubits and the kth mode of the bath
satisfy ga

k = Ngk .

decoherence-free to improve the precision at the cost of
doubled resources used per experiment. In this section we
present a measurement scheme with auxiliary states, only one
auxiliary qubit being used per experiment. When we prepare a
properly designed auxiliary qubit, the precision of parameter
estimation can approach the HL.

As illustrated in Fig. 1, we initially prepare an (N + 1)-
qubit entangled state with N being the number of working
qubits, i.e.,

|(0)〉 = 1√
2

(|1〉a|0〉⊗N + |0〉a|1〉⊗N
)
, (18)

where the subscript a indicates the auxiliary qubit.
The total system is governed by the Hamiltonian H =

HS + HB + Hint, HS and HB being the Hamiltonian of probe
and bath, Hint being the interaction Hamiltonian:

H = 1

2
h̄�0

N∑
i=1

σ (i)
z + 1

2
h̄ωaσ

a
z +

∑
k

h̄ωkb†
kbk

+
∑

k

N∑
i=1

h̄
(
g(i)

k σ (i)
z + ga

kσ
a
z

)
(b†

k + bk ), (19)

where ωa is the frequency of the auxiliary qubit, we assume
identical frequency �0 for the N working qubits, σ (i)

z and σ a
z

are the Pauli operators of the working and auxiliary qubits,
respectively, gk (ga

k) denotes the coupling constant between
the working (auxiliary) qubit and the kth mode of the envi-
ronment, b†

k is the creation operator of the harmonic oscillator
with frequency ωk .

According to Eq. (5), the quantum dynamics of the reduced
density matrix of the total system including the working and
auxiliary qubits is described by the quantum master equation

ρ̇ = i

h̄
[ρ, HS + HLS]

+ 1

2h̄2

[ N∑
i, j=1

Ci j (0, t )

(
σ ( j)

z ρσ (i)
z − 1

2

{
σ (i)

z σ ( j)
z , ρ

})

+
N∑

i=1

Cia(0, t )

(
σ a

z ρσ (i)
z − 1

2

{
σ (i)

z σ a
z , ρ

})

+
N∑

i=1

Cai(0, t )

(
σ (i)

z ρσ a
z − 1

2

{
σ a

z σ (i)
z , ρ

})

+Caa(0, t )
(
σ a

z ρσ a
z − ρ

)]
, (20)

where the time correlation functions are

CAB(ω, t )=2h̄2
∑

k

gA
k gB

k [2n(ωk, T ) + 1]
sin ωkt

ωk

∣∣∣∣
ωk=ω

(21)

for A, B = i, j, a, with n(ωk, T ) being the Bose-Einstein
distribution at temperature T , {A, ρ} = Aρ + ρA is the anti-
commutator,

HLS =
N∑

i, j=1

Fi j (0, t )σ (i)
z σ ( j)

z +
N∑

i=1

Fia(0, t )σ (i)
z σ a

z

+
N∑

i=1

Fai(0, t )σ a
z σ (i)

z + Faa(0, t )I (22)

is the Hamiltonian with the Lamb shift

FAB(ω, t ) = h̄
∑

k

gA
k gB

k

cos ωkt − 1

ωk

∣∣∣∣
ωk=ω

(23)

for A, B = i, j, a, and I is the identity operator.

1. Correlated environment

Suppose entangled probes are physically close, i.e., g( j)
k =

gk for j = 1, 2, . . . N . They may suffer from superdecoher-
ence with the time correlation function Ci j (0, t ) = h̄2γ (t ) for
i, j = 1, 2, . . . N . As illustrated in Fig. 1, in our measurement
scheme, we prepare a proper auxiliary qubit whose coupling
constant with the kth mode in the bath reads ga

k = Ngk .
Thus we have Cia(0, t ) = Cai(0, t ) = Nh̄2γ (t ), and Caa =
N2 h̄2γ (t ). Equation (20) is rewritten as

ρ̇ = i

h̄
[ρ, HS + HLS]

+ 1

2

[
N∑

i, j=1

γ (t )

(
σ ( j)

z ρσ (i)
z − 1

2

{
σ i

zσ
( j)
z , ρ

})

+ N
N∑

i=1

γ (t )

(
σ a

z ρσ (i)
z − 1

2

{
σ (i)

z σ a
z , ρ

})

+ N
N∑

i=1

γ (t )

(
σ (i)

z ρσ a
z − 1

2

{
σ a

z σ (i)
z , ρ

})

+ N2γ (t )
(
σ a

z ρσ a
z − ρ

)]
. (24)

For simplicity, we denote |1〉 ≡ |0a〉|1〉⊗N and |2〉 ≡
|1a〉|0〉⊗N . The diagonal terms of the density matrix are con-
stant in time, while the off-diagonal term is given by

ρ12(t ) = ei(N�0−ωa )tρ12(0). (25)
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FIG. 2. The uncertainty of the measurement δ�0 for (a) a
Markovian dephasing dynamics with 
(t ) = αt , (c) a
non-Markovian dynamics with 
(t ) = βt2. Equation (26) for
(b) a Markovian dephasing dynamics, (d) a non-Markovian
dynamics. The dashed green (light gray) line indicates the
uncorrelated decoherence. The solid red (dark gray) line indicates
the superdecoherence in correlated environment. And the dotted
blue (black) line indicates our scheme. The green triangle, red circle,
and blue square show the best interrogation time for uncorrelated
decoherence, superdecoherence, and our scheme, respectively. We
use the following parameters: N = 100, �0 = 2π × 411.5 THz,
α = 125 s−1, β = 4.2473 × 104 s−2, T = 0.1 s [52,56]. The rapid
oscillations are overcrowded due to �0 
 α.

As in the conventional quantum metrology scheme, after
a free evolution for a time interval t and a π/2 pulse, the
probability of finding the probes in the initial state reads

P = 1

2
[1 + cos(N�0 − ωa)t]. (26)

We investigate Eq. (26) for different decoherence dynamics
in Fig. 2. According to Eq. (16), the entangled probes have
a higher precision when experiencing a longer evolution time
te. Since the best interrogation time for the correlated bath is
much shorter than that for the uncorrelated bath, the precision
for the former is much worse. However, in our scheme, the

2 10 20 30 40 50
n

0

2

4

6

r

(a)

HL
Mar
NonMar
OS

2 10 20 30 40 50
n

0

1

2

3

|
0
| (

H
z)

(b)

HL
ME
NE,NU,MU
OS

FIG. 3. (a) The relative ratio r = |δω0|u/|δω0|e and (b) the stan-
dard deviation |δω0| of the measured frequency of the entangled
and unentangled probes when suffering from superdecoherence. The
black solid line represents the noise-free HL, and the blue dotted line
shows our scheme with only one auxiliary qubit. When there are no
auxiliary qubits, ME (MU) and NE (NU) correspond to the entangled
(unentangled) probes in the Markovian and non-Markovian environ-
ment, respectively.

HL can be recovered because the effects of the noises on
the working qubits have been effectively canceled due to the
auxiliary qubit. We further compare the case in non-
Markovian dynamics with the one in Markovian dynamics.
The best interrogation times are longer for the former, which
is consistent with the prediction in Ref. [25].

According to Eq. (16), the best resolution in the estimation
satisfies (N�0 − ωa)te = kπ/2 with odd k. The uncertainty in
our scheme reads

δω2
0 |e= 1

N2T te
= 1

(n − 1)2T te
∝ 1

(n − 1)2 , (27)

where n = N + 1. N is smaller than n due to the auxiliary
qubit.

For unentangled probes, each probe needs a properly de-
signed auxiliary qubit to cancel the effects of the noises on it.
The uncertainty of the measurement is

δω2
0 |u= 1

N ′T tu
= 2

nT tu
∝ 1

n
, (28)

where the best interrogation time tu is given by (�0 − ωa)tu =
kπ/2 with odd k. In this case, n = 2N ′ and thus only half of
the qubits play the role as the working qubits.

Based on the quantum dynamics shown in Fig. 2, we
compare the uncertainty of measurement with and without
auxiliary qubits in the presence of superdecoherence. In Fig. 3
we consider two cases, i.e., the noise is fully Markovian
with 
(t ) ∝ t or non-Markovian dynamics with 
(t ) ∝ t2. In
Fig. 3(b), the standard deviation of the measured frequency
|δω0|u and |δω0|e are set to be equal for n = 1. And the lines
of unentangled probes in the Markovian bath, and entangled
and unentangled probes in the non-Markovian bath, are over-
lapped. When the noise is of non-Markovian dynamics, r
remains unity for different n’s, as |δω0|u = |δω0|e ∝ n−1/2. It
implies that the precision of measurement cannot be improved
by using the entangled probes. When the noise is Markovian,
|δω0|e is a constant for different n’s, while |δω0|u ∝ n−1/2.
r approaches zero as n increases, which suggests that using
the entangled probes may even worsen the precision in the
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presence of superdecoherence. However, if one auxiliary qubit
is employed to cancel the effects of noise, the precision in our
scheme can approach the HL.

In the above consideration, we only investigate the
quantum dynamics for the GHZ state. We can also
choose other forms of the initial state (|1m〉 + |2m〉)/

√
2

to start with, where |1m〉 = |0a〉|0〉⊗m|1〉⊗(N−m), |2m〉 =
|1a〉|1〉⊗m|0〉⊗(N−m), the integer m ∈ [0, N]. Assuming that
ga

k/gk = K , the reduced density matrix of the total system is
described by the quantum master equation, i.e.,

ρ̇m
12 = i[(N − 2m)�0 − ωa]ρm

12 − γ (t )(N − K − 2m)2ρm
12,

(29)

where ρm
12 = 〈1m|ρ|2m〉. Let K = N − 2m to offset the impact

of correlated noise. The probability of finding the probes in
the initial state reads

P = 1

2
{1 + cos[(N − 2m)�0 − ωa]t}. (30)

According to Eq. (8), the best resolution in the estimation
satisfies [(N − 2m)�0 − ωa]te = kπ/2 with odd k. The un-
certainty thus reads

δω2
0 |e= 1

(N − 2m)2T te
∝ 1

(n − 2m − 1)2
. (31)

According to Eqs. (28) and (31), the relative ratio r ∝ (n −
2m − 1)/

√
n. It can be greater than 1 as long as n − √

n >

2m + 1. In other words, using initial states other than the GHZ
state, the precision can be improved over the unentangled
state. Furthermore, since r reaches its maximum when m = 0,
it implies that the initial state used in our scheme is optimal.

2. Uncorrelated environment

When all probes are placed in an uncorrelated environment,
e.g., they are spatially separated, the correlation function be-
comes Ci j (0) = h̄2γ (t )δi j , and the quantum master equation
(20) is simplified as

ρ̇ = i

h̄
[ρ, HS + HLS] + 1

2

[ ∑
i

γ (t )
(
σ (i)

z ρσ (i)
z − ρ

)
+ Caa(0, t )

h̄2

(
σ a

z ρσ a
z − ρ

)]
. (32)

Let K = ga
k/gk . Consequently, we have Caa(0, t ) = K2 h̄2γ (t ).

The off-diagonal element of the density matrix follows the
evolution

ρ12(t ) = ρ12(0)ei(N�0−ωa )t e−(N+K2 )
∫

γ (t ′ )dt ′
. (33)

Since N + K2 > N , using auxiliary qubits cannot reduce but
increases the dephasing of probes. As a consequence, our
measurement scheme cannot improve the precision of mea-
surement in the case of uncorrelated environments.

3. Partially correlated environment

In this section we consider a partially correlated environ-
ment. Assume that all qubits, including N working qubits and
one auxiliary qubit, are spatially arranged in a linear array, as

shown in Fig. 1. Following Ref. [43], the real-valued homo-
geneous correlation functions Ci j (0, t ), Cia(0, t ), and Cai(0, t )
read, respectively,

Ci j (0, t ) = h̄2e−x|i− j|γ (t ), (34)

Cia(0, t ) = Cai(0, t ) = h̄2Ke−x(N+1−i)γ (t ), (35)

where x = d/ξ , with d being the spatial distance between two
adjacent qubits and ξ the environmental correlation length
[43]. For an uncorrelated bath, we have ξ = 0 and Ci j =
δi j h̄

2γ (t ), while ξ = ∞ and Ci j = h̄2γ (t ) for any i and j in
a fully correlated bath. Generally, a finite but nonvanishing
ξ corresponds to a partially correlated bath. The off-diagonal
term of the density matrix is given by

ρ12(t ) = ρ12(0)ei(N�0−ωa )t e−A(N,x)
∫

γ (t ′ )dt ′
, (36)

where the factor

A(N, x) = (K − a)2 + b − a2, (37)

a =
n∑

i=1

exp[−x(N + 1 − i)], (38)

b =
n∑

i, j=1

exp(−x|i − j|). (39)

Here A(N, a)γ (t ) represents the total dephasing rate of the
working and auxiliary qubits. In order to improve the preci-
sion of measurement, we can always choose a proper K to
minimize the factor A(N, x). After some algebra we have

r =
⎧⎨⎩

[ A(1,x)
A(N,x)

]1/4[ 2(n−1)2

n

]1/2
, x > 0,[ 2(n−1)2

n

]1/2
, x = 0.

(40)

Therefore, employing auxiliary qubits can also improve the
precision of a measurement for the entangled probes in a
partially correlated environment.

D. Example for magnetic-field sensing

As known to all, the direction and magnitude of the ge-
omagnetic field are closely related to the position on the
earth. Thus various schemes have been put forward to mea-
sure the magnetic field in order to utilize geomagnetics for
navigation, e.g., the radical pair mechanism [4] for avian
navigation and the decoherence behaviors of the NV center
in diamond [57–61]. In this section, as an example we show
how to utilize our measurement scheme with one auxiliary
qubit in magnetic-field sensing. The initial state of the entan-
gled probes with N working qubits and one auxiliary qubit is
prepared in |(0)〉 = (|1〉a|0〉⊗N + |0〉a|1〉⊗N )/

√
2, where |0〉

and |1〉 refer to the parallel and antiparallel spin states with
respect to the magnetic field, respectively. Then, let the probe
be exposed to a magnetic field B. After a time interval t , it
evolves into

ρ(t ) = 1

2
[|1〉a〈1|a(|0〉〈0|)⊗N + |0〉a〈0|a(|1〉〈1|)⊗N

+ ei(Nγ0B−γaB)t e−
(t )|1〉a〈0|a(|0〉〈1|)⊗N

+ e−i(Nγ0B−γaB)t e−
(t )|0〉a〈1|a(|1〉〈0|)⊗N ], (41)
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where γ0 (γa) is the gyromagnetic ratio of the working
(auxiliary) qubit. By choosing an appropriate auxiliary qubit
which satisfies ga

k = Ngk , we have 
(t ) = 0. The reduced
density matrix of the working qubits at time t is given by

ρ(t ) = 1

2
[|1〉a〈1|a(|0〉〈0|)⊗N + |0〉a〈0|a(|1〉〈1|)⊗N

+ ei(Nγ0B−γaB)t |1〉a〈0|a(|0〉〈1|)⊗N

+ e−i(Nγ0B−γaB)t |0〉a〈1|a(|1〉〈0|)⊗N ]. (42)

After a π/2 pulse, the probability of finding the probes in their
initial state reads P = [1 + cos(Nγ0Bt − γaBt )]/2. Here the
Fisher information is given by

F (B) = (Nγ0 − γa)2t2 sin2(Nγ0Bt − γaBt )

1 − cos2(Nγ0Bt − γaBt )
. (43)

Since the best interrogation time for the entangled probes is
determined by (Nγ0B − γaB)te = kπ/2 with odd k, we calcu-
late the uncertainty in the estimated value of B as

δB2|e = 1

(Nγ0 − γa)2T t
. (44)

When N is large enough, the precision of measurement will
approach the HL.

III. QUANTUM SIMULATION OF QUANTUM
METROLOGY

In the NMR platform, we can use bath-engineering tech-
niques and the GRAPE algorithm to simulate the quantum
dynamics under superdecoherence. By this quantum simula-
tion we can further prove that our measurement scheme with
one auxiliary qubit can approach the HL, even in the case of
superdecoherence. Utilizing the bath-engineering technique,
we apply a time-dependent magnetic field to the total system,
including the working and auxiliary qubits. The total system
is governed by the Hamiltonian [37,38]

H = 1

2
h̄�0

N∑
i=1

σ (i)
z + 1

2
h̄ωaσ

a
z + β1(t )

N∑
i=1

σ (i)
z + β2(t )σ a

z ,

(45)
with

β1(t ) = b1

J∑
j=1

ω jF ( j) cos(ω jt + ψ1 j ), (46)

β2(t ) = b2

J∑
j=1

ω jF ( j) cos(ω jt + ψ2 j ), (47)

where b1 and b2 are the noise amplitudes perceived by the
working and auxiliary qubits, respectively. ω0 (ωJ = Jω0) is
the base (cutoff) frequency with ω j = jω0. F ( j) is the func-
tion which determines the type of noise, and ψi j (i = 1, 2) is a
random number. All the parameters above can be manipulated
manually. Here we apply identical time-dependent magnetic
fields to all of the working qubits to simulate the superdeco-
herence. We further assume b2 = nb1 and ψ1 j = ψ2 j to cancel
the effects of the noise by the auxiliary qubit.

We divide the Hamiltonian (45) into two parts, i.e., the
control Hamiltonian Hc = h̄(�0

∑N
i=1 σ (i)

z + ωaσ
a
z )/2 and the

noise Hamiltonian H0(t ) = β1(t )
∑N

i=1 σ (i)
z + β2(t )σ a

z . In the
Schrödinger picture, the propagator of this dynamics is
given by

U (t ) = Uc(t )Ũ (t ), (48)

Uc(t ) = e− i
2 (�0t

∑
i σ

(i)
z +ωatσ a

z ), (49)

Ũ (t ) = e− i
h̄

∫ t
0 dτβ1(τ )

∑
i σ

(i)
z e− i

h̄

∫ t
0 dτβ2(τ )σ a

z . (50)

The initial state of the total system is |(0)〉 =
[|1〉a|0〉⊗N + |0〉a|1〉⊗N ]/

√
2. Let it evolve for a time interval

t under the Hamiltonian (45). Thus we have

|ψ (t )〉 = U (t )|ψ (0)〉
= 1√

2
(e−iϕ(t )|1〉a|0〉⊗N + eiϕ(t )|0〉a|1〉⊗N ), (51)

with the random phase accumulated in the simulation,

ϕ(t ) = ϕA(t ) + ϕB(t ), (52)

ϕA(t ) = 1

2
(N�0 − ωa)t, (53)

ϕB(t ) = 1

h̄

[
N

∫ t

0
dτβ1(τ ) −

∫ t

0
dτβ2(τ )

]
. (54)

In order to mimic the effect of decoherence, we prepare
a large number of ensembles which evolve under different
Hamiltonians characterized by a set of the random numbers
{ψ1 j, ψ2 j | j = 1, . . . , J}. Finally, the probability of finding the
probes in the initial state is over the ensemble as

P0(t ) = 1

2
[1 + cos 2ϕA〈cos 2ϕB〉 − sin 2ϕA〈sin 2ϕB〉]. (55)

If we further assume a Gaussian noise, then we have
〈ϕ2m−1

B (t )〉 = 0 for any positive integer m [37], thus yielding

P0(t ) = 1

2
[1 + cos 2ϕA(t )e−2χ (t )], (56)

where

χ (t ) = 〈ϕ2
B(t )〉 = 4

2π h̄2

∫ +∞

−∞

dω

ω2
S(ω) sin2 ωt

2
,

S(ω) = N2S11(ω) − NS12(ω) − NS21(ω) + S22(ω).

Here Si j (ω) = ∫+∞
−∞ dt〈βi(0)β j (t )〉 exp(iωt ) (i, j = 1, 2) is

the Fourier transform of the two-time correlation function
〈βi(t1)β j (t2)〉, which depends on the time interval t2 − t1. And
S(ω) is the total power spectral density of the noise, which
describes the energy distribution of the stochastic signal in the
frequency domain [37].

We utilize the relation that b2 = Nb1 and ψ1 j = ψ2 j to
obtain the two-time correlation functions as

〈β1(t + τ )β1(t )〉 = b2
1ω

2
0

2

J∑
j=1

j2F ( j)2 cos(ω jτ ),

〈β1(t + τ )β2(t )〉 = 〈β2(t + τ )β1(t )〉

= Nb2
1ω

2
0

4

J∑
j=1

j2F ( j)2 cos(ω jτ ),
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FIG. 4. Quantum simulation of population dynamics for
(a) Markovian noise and (b) non-Markovian noise. The dashed
green (light gray) line, the solid red (dark gray) line, and the dotted
blue (black) line are the same as Fig. 2, while the green triangles,
the red circle, and the blue squares are obtained by the quantum
simulation approach [37,38] for the uncorrelated decoherence, the
superdecoherence, and our scheme, respectively. The insets enlarge
the short-time regime.

〈β2(t + τ )β2(t )〉 = N2b2
1ω

2
0

2

J∑
j=1

j2F ( j)2 cos(ω jτ ).

Thus the power spectral densities are respectively given by

S11(ω) = πb2
1ω

2
0

2

J∑
j=1

j2F ( j)2[δ(ω − ω j ) + δ(ω + ω j )],

S12(ω) = S21(ω)

= Nπb2
1ω

2
0

2

J∑
j=1

j2F ( j)2[δ(ω − ω j ) + δ(ω + ω j )],

S22(ω) = N2πb2
1ω

2
0

2

J∑
j=1

j2F ( j)2[δ(ω − ω j ) + δ(ω + ω j )].

Obviously, the total power spectral density reads S(ω) = 0,
and the decoherence function also vanishes, i.e., χ (t ) = 0.

We calculate the uncertainty of the measurement by the
Fisher information as

δ�2
0 = 1

(T/t )F (φ)
= 1 − cos2 [(Nω0 − ωa)t]

N2T t sin2 [(Nω0 − ωa)t]
. (57)

By similar derivation to Eq. (27), we have δ�2
0 |e∝ (n − 1)−2.

We find the scaling law for our scheme can approach the HL
when N is large enough, even in the case of superdecoherence.

We apply the quantum simulation algorithm to simulate our
scheme with N = 100, �0 = 2π × 25 kHz, α = 125 s−1, β =
4.2473 × 104 s−2, as shown in Fig. 4. We use the same types
of lines as Fig. 2 to represent the probability. Here the number

0 0.2 0.4 0.6 0.8 1
t (ms)

0

0.05

0.1

0.15

0.2

0.25

(t
)

NonMar
Mar
OS

0 0.02 0.04 0.06 0.08 0.1

0

0.005

0.01

0.015

0.02

0.025

FIG. 5. The simulated decoherence factor 
(t ) for different
schemes: the gray solid line for the Markovian environment, the red
dash-dotted line for the non-Markovian environment, and the blue
dotted line for our scheme. Notice that the double axes are used to
show the different timescales of the two environments.

of random realizations in ensemble we used in this simula-
tion is 2 × 104. Without loss of generality, we assume the
model of white noise, i.e., F ( j) = 1/ j [34]. For a 13C-labeled
trans-crotonic acid which is used as a four-qubit simulator, the
shortest T2 of C nuclear spins is 0.87 second [62]. The param-
eters are chosen according to the requirement that the longest
duration in the metrology is much shorter than the timescale of
pure dephasing. Because the transverse relaxation time of the
NMR platform is of the order of seconds, we choose suitable
parameters to ensure that the simulated dephasing time is
much less than the real T2. In the uncorrelated Markovian
decoherence, the base and cutoff frequencies are respectively
ω0 = 2 kHz and ωc = 2 MHz, and the noise amplitude is b2

1 =
4.109 692 × 10−3h̄2. In the Markovian superdecoherence, the
parameters are respectively ω0 = 20 kHz, ωc = 0.2 GHz,
and b2

1 = 4.109 692 × 10−3h̄2. For the non-Markovian noises,
we use the following parameters for both cases, i.e., ω0 =
0.001 Hz, ωc = 0.18 Hz, and b2

1 = 4.7192 × 108h̄2. We can
learn from Fig. 4 that the results of the stochastic Hamiltonian
simulation are in quite-good agreement with the results of
the Bloch-Redfield equation. The blue square dots represent
our scheme, which implies that employing one auxiliary qubit
can cancel the effects of noise. As a result, the precision
in our scheme can approach the HL. In order to explore
the underlying physical mechanism explicitly, we also plot
the corresponding decoherence factor 
(t ) in Fig. 5. For the
Markovian noise, the coherence decays with a constant rate,
and thus using entangled probes will not improve the preci-
sion of the estimation. For the non-Markovian noise, since
the coherence decays quadratically with time, the use of the
entangled probe can offer a better estimation, but the precision
is still lower than the HL. However, for a correlated bath,

062429-8



QUANTUM METROLOGY WITH ONE AUXILIARY PARTICLE … PHYSICAL REVIEW A 104, 062429 (2021)

because all qubits suffer from the collective noise, by properly
arranging the auxiliary qubit the noises on the working qubits
can be effectively canceled and thus the noise-free measure-
ment can be performed.

Superdecoherence has been observed experimentally in the
ion-trap system with 40Ca+ ions [52,63]. Therein the noise is
mainly caused by fluctuations of the homogeneous magnetic
field [52]. In order to demonstrate our scheme, we may in-
sert one additional ion into the trap as the auxiliary particle,
which is more sensitive to the magnetic field, e.g., with the
gyromagnetic ratio about N times that of the system qubit.
For example, the gyromagnetic ratio of S1/2(m = −1/2) ↔
D5/2(m = 1/2) is four times that of S1/2(m = −1/2) ↔
D5/2(m = −1/2) [64]. By choosing appropriate qubit states,
the scheme with N = 2, 4, 5, 7 can be realized, and the ad-
ditional magnetic field to be measured is only applied to
the system qubits. Furthermore, if we initially prepare an
(N + 1)-qubit entangled state as in Eq. (18), e.g., N = 4, it
could be a potential realistic implementation of our scheme.

IV. CONCLUSION

In this paper we propose a quantum metrology scheme with
auxiliary states. The auxiliary states are properly designed and
can selectively offset the impact of environmental noise. On
account of superdecoherence, we analyze the optimal preci-
sion with and without auxiliary qubits. We find out that when
the auxiliary qubits are not employed, the precision cannot be
improved by using the entangled probes no matter whether
the noise is Markovian or non-Markovian. However, utilizing
an auxiliary qubit can make the precision approach the HL in
our scheme. We further discuss the cases of an uncorrelated
and partially correlated environment and find that employing
auxiliary qubits can improve the precision of measurement in
the partially correlated environment, but it fails in the uncor-
related environment. As an example, we show how to utilize
our scheme with one auxiliary qubit in magnetic-field sensing.
Finally, we use the bath-engineering technique and GRAPE to
simulate the quantum dynamics and demonstrate that assisted
by an auxiliary qubit, our scheme can approach the HL in the
case of superdecoherence.
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APPENDIX: GRADIENT ASCENT PULSE
ENGINEERING ALGORITHM

The GRAPE algorithm has been widely used in NMR
experiments [35,36]. For an n-qubit NMR system, the total
Hamiltonian Htot is composed of the internal term Hint and the
rf term

HRF = −
n∑

k=1

γkBk
[

cos
(
ωRF

k t + φRF
k

)
σ (k)

x

+ sin
(
ωRF

k t + φRF
k

)
σ (k)

y

]
, (A1)

where γk and σ (k)
α (α = x, y, z) are respectively the gyromag-

netic ratio and the Pauli operators of the kth nuclear spin, and
Bk , ωRF

k , and φRF
k are the amplitude, driving frequency, and

phase of the control field on the kth nuclear spin, respectively.
The aim of the GRAPE algorithm is to find the opti-

mal amplitudes Bk’s and phases φRF
k ’s by iteration, so as to

make the designed unitary evolution UD very close to the
target evolution UT . The fidelity of UD relative to UT can be
expressed as F = |Tr(U †

T UD)|/22. By dividing the total evolu-
tion time T into N steps, the time of each step is �t = T/N ,
and thus the time evolution operator of the jth step can be
expressed as

Uj = e−i�t[Hint+
∑n

k=1

∑
α=x,y u(k)

α ( j)σ (k)
α ], (A2)

where u(k)
x ( j) = γkBk cos(ωRF

k t j + φRF
k ) and u(k)

y ( j) =
γkBk sin(ωRF

k t j + φRF
k ). The total evolution operator can

be given as UD = UNUN−1 . . .U2U1. The gradient of the
fidelity F with respect to u(k)

α ( j) is

g(k)
α ( j) = ∂F

∂u(k)
α ( j)

≈ − 2

2n
Re[U †

T UN . . .Uj+1(−i�tσ (k)
α )Uj . . .U1].

(A3)

The GRAPE algorithm starts with an initial guess input and is
followed by the gradient iteration to increase the fidelity. We
replace u(k)

α ( j) by u(α)
k ( j) + εsg

(α)
k ( j), where εs is the iteration

step, until the fidelity changes less than the selected threshold.
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