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Simulation of open quantum dynamics for various Hamiltonians and spectral densities are ubiquitous
for studying various quantum systems. On a quantum computer, only log2 N qubits are required for
the simulation of an N -dimensional quantum system, hence simulation in a quantum computer can
greatly reduce the computational complexity compared with classical methods. Recently, a quantum
simulation approach was proposed for studying photosynthetic light harvesting [npj Quantum Inf. 4,
52 (2018)]. In this paper, we apply the approach to simulate the open quantum dynamics of various
photosynthetic systems. We show that for Drude–Lorentz spectral density, the dimerized geometries
with strong couplings within the donor and acceptor clusters respectively exhibit significantly improved
efficiency. We also demonstrate that the overall energy transfer can be optimized when the energy gap
between the donor and acceptor clusters matches the optimum of the spectral density. The effects of
different types of baths, e.g., Ohmic, sub-Ohmic, and super-Ohmic spectral densities are also studied.
The present investigations demonstrate that the proposed approach is universal for simulating the
exact quantum dynamics of photosynthetic systems.

Keywords nuclear magnetic resonance, quantum simulation, open quantum system

1 Introduction

As commonly understood, the efficiency of exciton en-
ergy transfer (EET) in natural photosynthesis is close to
unity [1–3]. Because of the discovery of EET with co-
herent features, the role of quantum coherence in EET
efficiency has become a research hotspot in the past two
decades [4–13]. Pigment-protein complexes in photosyn-
thesis are essentially open quantum systems. Since the
couplings between the system and the environment are of
the same order of magnitude as the couplings within the
system [2, 3], non-Markovian features arise and make sim-
ulating the open quantum dynamics therein difficult [14–
18]. Even so, the research of open quantum systems plays
an important role in many fields [19, 20]. So far, some the-
oretical methods have been proposed to effectively simu-
late EET in photosynthesis [3], such as the numerically-
exact hierarchical equation of motion (HEOM) [21–28],
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the quantum jump approach [29, 30], the small-polaron
quantum master equation [31], the modified Redfield the-
ory and its coherent generalization [32, 33]. Among these
methods simulating the EET, the HEOM yields exact
quantum dynamics in the whole parameter regime, e.g.,
the Förster regime and the Redfield regime [3, 22]. It
is helpful to revealing the role of quantum coherence in
optimizing the photosynthetic EET [5] and clearly eluci-
dating the design principals of artificial light-harvesting
devices [34–40].

However, despite the fact that the HEOM has been
widely used in the study of open quantum dynamics, in-
cluding EET in natural photosynthesis, in the case of large
dimensions and complex spectral densities, the numerical
overhead becomes very large. Recently, we proposed a
novel experimental approach to simulate EET in photo-
synthesis [41]. We have proved that this approach is exact
and efficient in high-temperature regime. We generate a
large number of realizations driven by random Hamilto-
nians, and by averaging over the ensemble we obtain a
density matrix whose dynamics is subject to decoherence.
As a demonstration, we adopted a prototype in Ref. [42]
and compared the results of nuclear magnetic resonance
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(NMR) simulation and HEOM calculation under Drude–
Lorentz noise. We showed that it is valid to efficiently sim-
ulate the exact quantum dynamics in the photosynthetic
EET by using NMR if the number of random realizations
is sufficiently large.

As we know, for systems with large dimension or com-
plex spectral densities, the HEOM requires a huge amount
of computation resources. For example, to simulate an N -
level system, the computation cost of an N -layer HEOM
scales exponentially in N (N ≤ N) [43]. However, in
the quantum simulation [44, 45], because the quantum
dynamics of N states can be simulated by using log2 N
qubits, the computation cost is a polynomial of N . There-
fore, this quantum simulation can effectively reduce the
computational complexity. And we know that qubits can
build different quantum gates, and quantum gates are also
the basic components of quantum computing and quan-
tum communication [46–48].

In 2013, it was demonstrated that the efficiency of en-
ergy transfer can be improved when there is strong cou-
pling within donor and acceptor pairs by studying energy
transfer in a linear-tetramer model [42]. In the same year,
del Rey et al. proposed a design principle called phonon
antenna. By spectrally sampling optimum in their local
environmental fluctuations, the coherence between inter-
nal pigments can affect and optimize the way excitation
flows [49]. And the strong coupling to an under-damped
vibrational mode can help the photosynthetic complex to
overcome the energy barrier between the donor and ac-
ceptor, and thus increase the efficiency [50].

In Ref. [41], only a quantum simulation with a specific
Hamiltonian and Drude–Lorentz noise was demonstrated.
The clustered geometry was proven to be optimal for a
broad parameter regime by the coherent modified Redfield
theory [42]. However, the theory is shown to break down
when the reorganization energy is much larger than the
intra-system coupling [33, 51]. A natural question arises:
does the above discovery still hold in a broad range of pa-
rameters by a numerically-exact approach? On the other
hand, since both modifying the geometry and spectral-
sampling in local environmental fluctuations can optimize
energy flow in EET respectively, it is quite natural to
ask whether light harvesting can be further optimized if
both means have been applied? In this paper, we apply
this numerically-exact approach to efficiently verify the
hypothesis that we can simultaneously optimize the en-
ergy transfer by the geometry and environment. Further-
more, for spectral densities beyond Drude–Lorentz type,
the computation complexity of the HEOM will be signif-
icantly increased, when there are more exponential com-
ponents in the correlation function of the bath [43, 52].
In this paper, we also show that the quantum simula-
tion approach is applicable in photosynthetic systems with
complicated environments, which are not tractable by the
conventional approach.

The structure of this paper is organized as follows. In

Section 2, we give a brief introduction to the HEOM
and the approach for quantum simulation in NMR. It
combines the bath-engineering technique [53, 54] and
the gradient ascent pulse engineering (GRAPE) algo-
rithm [55, 56], which will be introduced in Appendixes B
and C, respectively. In Section 3.1, we first consider
the simulation of the EET dynamics in a linear-tetramer
model with different geometries. After the geometry is
optimized, we also consider how to improve the EET effi-
ciency from the aspect of the bath, which will be discussed
further in Appendix E. Through this specific model, we
confirm the discoveries in Refs. [42, 49]. Besides, in Sec-
tion 3.2 we also consider the effects of different types of
spectral densities on the EET dynamics, which was not
analyzed in Ref. [41]. In Section 3.3, by N = 8, we show
how to generalize our quantum simulation approach to a
case beyond 2 qubits. In Section 3.4, we compare the com-
putational complexities of NMR simulation and HEOM,
and analyze the possible errors in NMR simulations in
Section 3.5. Finally, we discuss the prospect and conclu-
sions in Section 4. In Appendixes A and D, we introduce
the initialization and tomography in NMR, respectively.

2 Theory for quantum simulation

In this section, we introduce how to simulate the EET
dynamics of photosynthesis in NMR systems. In Ref. [41],
we simulated the influence of noise by using the bath-
engineering technique [53, 54], and realized the evolution
of quantum states by using the GRAPE algorithm [55, 56].
We summarize these two techniques in Appendixes B and
C. In the following, we shall give a brief introduction to our
model system and the HEOM theory for photosynthetic
EET and the process of quantum simulation.

2.1 Model photosynthetic system

Fig. 1 Photosynthetic tetramer and physical system for
NMR simulation. (a) Linear geometry with four chromophores
for photosynthetic EET. The distance between the first donor
and the last acceptor is fixed as R = 40 Å. We assume that
the distances within the pairs of donors and acceptors, i.e., r,
are equal. All of the transition dipoles are perpendicular to
the horizontal axis. (b) Chemical structure of a 13C-labeled
chloroform molecule, where H and 13C nuclear spins are chosen
as the two qubits for quantum simulation.
Following Ref. [41], we use the tetramer model, which con-
tains four chlorophyll molecules, for the quantum simula-
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tion. As shown in Fig. 1(a), the left pair of chlorophylls act
as donors and the right pair as acceptors. For molecules,
their electronic structures are generally studied [57]. Here,
we adopt the Frenkel-exciton Hamiltonian [2, 58]

HEET =

4∑
i=1

εi|i⟩⟨i|+
∑

1≤i ̸=j≤4

Jij |i⟩⟨j| (1)

to describe the dynamics of EET in photosynthesis. Here
|i⟩ (i = 1, 2, 3, 4) represents that only ith molecule is in the
excited state while the others are in the ground state. εi is
the site energy of ith exciton. For simplicity, the electronic
interaction between ith and jth excitons is given by the
dipole-dipole interaction as
Jij =

1

4πε0r3ij
[µ⃗i · µ⃗j − 3(µ⃗i · r̂ij)(µ⃗j · r̂ij)] , (2)

where r⃗ij = rij r̂ij is the displacement vector from site i to
site j, µ⃗i the transition dipole of site i, ε0 the vacuum per-
mittivity. In numerical simulations, we take µj = 7.75 D
and r ∈ [6, 14] Å, which are typical in natural photosyn-
thesis.

In photosynthetic complexes, the energy transfer is as-
sisted by the interaction between the system and the bath,
which can be described as

HSB =
∑
i,k

gikVj

(
a†ik + aik

)
. (3)

Here, Vj = |i⟩⟨i|, a†ik (aik) is the creation (annihilation)
operator of the kth phonon mode of the ith molecule, and
gik represents the coupling strength. HSB is the main
cause of energy relaxation in photosynthetic systems. All
the information about the couplings between system and
environment can be given by the spectral density, i.e.,

GEET(ω) =
∑
k

g2ikδ(ω − ωk). (4)

The spectral density plays an important role in the op-
timization of EET in photosynthesis. It has been shown
that the energy transfer can be improved by adjusting the
parameters of photosynthetic system so that the energy
gap matches the optimal frequency of the spectral den-
sity [49].

2.2 Hierarchical equation of motion method

The exact EET dynamics can be given by the HEOM [22,
59]

∂

∂t
σn⃗=(−iLe+

∑
j

njγj)σn⃗+
∑
j

Φjσn⃗j+
+
∑
j

njΘjσn⃗j− ,

(5)

where σn⃗ and σn⃗j± are the auxiliary density matrices with
n⃗ = (n1, n2, · · · , nj , · · · ) and n⃗j± = (n1, n2, · · · , nj ±
1, · · · ), and nj ’s non-negative integers, σ0⃗ = ρ the re-
duced density matrix of photosynthetic system, Le the

Liouville superoperator of HEET. Besides, Φj = iV ×
j and

Θj = i( 2λj

βh̄2V
×
j − iλj

h̄ V ◦
j ) with V ×

j σn⃗ = Vjσn⃗ − σn⃗Vj and
V ◦
j σn⃗ = Vjσn⃗ + σn⃗Vj , where Vj = |j⟩⟨j|. For Drude–

Lorentz spectral density, i.e.,

GEET(ω) =
2λjγjω

ω2 + γ2
j

(6)

with λj the reorganization energy and γj the relaxation
rate. For a generic spectral density, it can be decomposed
into a summation of Lorentzian form [52, 60].

2.3 The process of quantum simulation

In the quantum simulation of photosynthetic EET with
NMR system in Ref. [41], there are three steps: We first
perform the theoretical simulations by random Hamiltoni-
ans on the ensemble to obtain the optimal parameters for
the GRAPE simulation. Then, we perform the GRAPE
simulation to obtain optimal pulse sequence for the ex-
perimental realization. Finally, one can then perform the
experiment based on the above theoretical simulations. If
the experimental realizations are ideal, the experiments
will faithfully reproduce the results of the GRAPE sim-
ulation. Since in Ref. [41], the experimental demonstra-
tions for the Drude–Lorentz spectral density coincide with
those by the HEOM, we will focus on the first two steps in
the following discussions. In Appendix, we describe these
three steps in detail.

For photosynthetic complexes with N chlorophylls,
there are only N single-excitation states in the process
of energy transfer. As a result, only log2 N qubits are re-
quired for quantum simulation and thus two qubits are
needed to simulate the tetramer model. In this case,
the single-excitation states in photosynthesis are encoded
as two-qubit product states as |1⟩ = |00⟩, |2⟩ = |01⟩,
|3⟩ = |10⟩, and |4⟩ = |11⟩. As shown in Fig. 1(b), we
regard H and C nuclear spins as the two qubits. The
Hamiltonian HNMR implemented in NMR simulations is
HNMR = HEET/C with a scaling factor

C = 3× 109. (7)

The total Hamiltonian for simulating EET process is

H(t) = HNMR +HPDN. (8)

HPDN is introduced to mimic the effects of the local baths
in photosynthesis. In order to exactly simulate the bath’s
effect, we require that χ(Ct) = Re[g(t)] as shown in Ap-
pendix B, where the decoherence factor χ(t) is the Fourier
transform of the noise’s correlation function in the quan-
tum simulation, g(t) is the lineshape function of photo-
synthesis. By the bath-engineering technique [53, 54, 61],
we will show that it is possible to simulate various types
of spectral densities in Section 3.2.
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Fig. 1 Simulations of the energy transfer by the HEOM (curves) and GRAPE (symbols) and quantum simulation (broken
curves) with: (a) r = 13.4 Å; (b) r = 11.3 Å; (c) r = 8.0 Å. The last two are averaged over 500 random realizations. The
insets enlarge the simulations by the HEOM to show the EET times and the coherent oscillation in the short-time regime.
(d) shows the convergence between the HEOM (curves) and quantum simulations (dots) with r = 13.4 Å as the ensemble size
N increases. In all simulations, we take γNMR = 2π × 50 Hz and λNMR = 2π × 2 Hz.

3 Numerical calculation and analysis

In Ref. [41], only the EET dynamics for a specific Hamil-
tonian under the Drude–Lorentz noise was demonstrated.
In this section, we will use the above quantum simula-
tion approach to investigate the dynamics for different
geometries and various types of spectral densities. In ad-
dition, we will compare the computational complexity of
the quantum simulation and the HEOM, and analyze the
errors in the quantum simulation.

3.1 Simultaneous optimization by geometry and bath

In Ref. [42], the effects of the geometry on the energy
transfer was investigated. In the study, it was revealed
that the dimerized structure explores coherent relaxation
to promote the energy transfer within the dimer. Since
the coupling between two sites is significantly dependent
on the distance between two chlorophylls, different ge-
ometries correspond to different Hamiltonians. In this
sub-section, we analyze the EET dynamics for different
Hamiltonians with the quantum simulation approach.

In Fig. 1(a), we show the comparison among the HEOM,

the quantum simulation and the GRAPE simulation for
r = 13.4 Å. Therein, all four chlorophylls are equally
spaced and the Hamiltonian for the NMR quantum sim-
ulation HNMR = HEET/C is

HNMR
2π

=


130 1.2608 0.1612 0.0474

1.2608 129 1.3190 0.1612
0.1612 1.3190 123 1.2608
0.0474 0.1612 1.2608 122

 kHz. (9)

In Fig. 1(b), we set r = 11.3 Å and thus the distance
between the two donors (acceptors) is slightly smaller than
the distance between the central two sites. In this case,
the donors (acceptors) form a dimer. The corresponding
Hamiltonian reads

HNMR
2π

=


130 2.1025 0.1283 0.0474

2.1025 129 0.5759 0.1283
0.1283 0.5759 123 2.1025
0.0474 0.1283 2.1025 122

 kHz. (10)

In Fig. 1(c), we further reduce the intra-dimer distance to
an even smaller value, i.e., r = 8 Å. Thus, the Hamilto-
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nian is

HNMR
2π

=


130 5.9251 0.0926 0.0474

5.9251 129 0.2195 0.0926
0.0926 0.2195 123 5.9251
0.0474 0.0926 5.9251 122

 kHz. (11)

In order to obtain the above Hamiltonians, we adopt
the site energies ε1 = 13 000 cm−1, ε2 = 12 900 cm−1,
ε3=12 300 cm−1, and ε4=12 200 cm−1, which are typical
in natural photosynthetic systems, for the corresponding
Hamiltonians of photosynthesis. Except that J14 is invari-
ant, different distances r’s correspond to a set of different
coupling terms Jij ’s (i, j = 1, 2, 3, 4) as determined by
Eq. (2).

In addition, we assume the spectral density of Drude–
Lorentz form as given in Eq. (6), with the optimal fre-
quency γj . In the simulations, we assume identical phonon
relaxation rates γNMR = γEET/C = 2π×50 Hz and identi-
cal reorganization energies λNMR = λEET/C = 2π × 2 Hz
for all local baths. In addition, the influence of tempera-
ture is also very important [62]. Since the results of quan-
tum simulation coincide with those of the HEOM only
at high temperatures, we take TEET = 3 × 106 K and
TNMR = 10−3 K in our numerical calculations. In this
way, we compare the results of the quantum simulation,
and the GRAPE simulation, and the HEOM in Fig. 1. As
shown in Fig. 1, both the results of the random ensemble
and GRAPE are in good agreement with the results of the
HEOM simulation. Therefore, we show that our approach
can be applied to photosynthetic systems with different
geometries, beyond the linear one with equal-spacing.

As shown in Fig. 1(b), the energy transfer is the fastest
for the case with r = 11.3 Å. The dimerized geometry
explores the coherent relaxation within the donors to ac-
celerate the energy transfer. However, over-dimerization
in the geometry significantly reduces the energy transfer
rate, because it enlarges the energy gap between the donor
and acceptor clusters, cf. Fig. 1(c). These numerically-
exact simulations are consistent with those discoveries ob-
tained by the approximate theory in Ref. [42]. We notice
that there are some small differences between the HEOM
and the quantum simulations, which rely on the assump-
tion that the ensemble average is equivalent to the time
average. Therefore, we verify the assumption in Fig. 1(d).
As the number of random realizations in the ensemble in-
creases, the results of quantum simulation approach closer
and closer to those of the HEOM. Besides, we also ob-
serve the deviations of the GRAPE simulations from the
quantum simulations, the possible causes of which will be
discussed at the end of this section. In this regard, both
the quantum simulations and GRAPE simulations suc-
cessfully reproduce the coherent oscillations at the short-
time regime and the incoherent relaxation at the long-time
regime, and it is valid to exactly simulate the open quan-
tum dynamics with a generic Hamiltonian by the above
approach.

Fig. 2 Simulations of the energy transfer by the HEOM
(curves) and GRAPE algorithm (symbols) with r = 11.3 Å,
λNMR = 2π × 2 Hz, and: (a) γNMR = 2π × 0.5 kHz, (b)
γNMR = 2π × 2.668 kHz, (c) γNMR = 2π × 7 kHz. The insets
show the EET times.

In Ref. [49], it was shown that the optimization of the
EET can be achieved when the energy gap of the sys-
tem matches the optimum of the spectral density. In-
spired by this discovery, we subsequently consider the ef-
fects of the bath on the EET dynamics for a fixed Hamil-
tonian with r = 11.3 Å, which was shown to be op-
timal among different geometries in Fig. 1. Since the
peak of the Drude–Lorentz spectral density is located
at γNMR, we fix λNMR and simulate the EET dynamics
for a broad range of γNMR. Here, in Fig. 2, we only
demonstrate the population dynamics for three typical
parameters, i.e., γNMR/(2π) = 0.5 kHz, 2.668 kHz, and
7 kHz. Obviously, the optimal relaxation rate of the bath
is γopt

NMR = 2π × 2.668 kHz as it requires the shortest
time to achieve equal populations. The physical mech-
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Fig. 3 Simulations of the energy transfer for the Ohmic, sub-Ohmic, and super-Ohmic spectral densities by the quantum
simulation (curves) and GRAPE algorithm (symbols) with N = 500. (a1, b1, c1) represent the results of Ohmic spectral
density, with λ = 10−3, ωc = 2π× 100 Hz, and ω0 = 2π× 0.1 Hz. (a2, b2, c2) show the results of sub-Ohmic spectral density,
with λ = 0.05, ωc = 2π × 50 Hz, and ω0 = 2π × 0.1 Hz. (a3, b3, c3) reveal the results of super-Ohmic spectral density, with
λ = 0.05, ωc = 2π × 40 Hz, and ω0 = 2π × 0.1 Hz. The three rows correspond to r = 13.4 Å, r = 11.3 Å, and r = 8.0 Å,
respectively.

anism can be described by the energy diagram of the sys-
tem. Due to their strong couplings, sites 1 and 2 form the
donor cluster, while sites 3 and 4 form the acceptor clus-
ter. Since the donor cluster is weakly coupled with the
acceptor cluster, the EET between the two clusters can
be described by the Förster theory. Therefore, the inter-
cluster EET is optimized when the energy gap between
the lower-energy eigen-state of the donor cluster and the
higher-energy eigen-state of the acceptor cluster matches
the optimum of the spectral density. The details about
this physical mechanism is elucidated in Appendix E.

3.2 Application to complicated spectral densities

Since a general power-law form spectral density can de-
scribe an extremely-large number of physical environ-

ments [63, 64], we use it to show the universal applica-
bility of the quantum simulation approach. Following
Refs. [17, 65], we analyze the EET dynamics for three
types of spectral densities, namely Ohmic, sub-Ohmic,
and super-Ohmic spectral densities, which are expressed
in a unified manner as

J(ω) =
λω

Γ(s)

(
ω

ωc

)s−1

e−
ω
ωc , (12)

where Γ(s) is the Euler Gamma function, and ωc is an
exponential cutoff frequency, λωc is the coupling strength
between the system and the bath. When 0 < s < 1,
s = 1, and s > 1, J(ω) denotes sub-Ohmic, Ohmic, and
super-Ohmic spectral densities, respectively.

Here, we take s = 1, 0.5, 3 corresponding to respectively
the Ohmic, sub-Ohmic, and super-Ohmic spectral density,
i.e.,
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JOhm(ω) = λωe−
ω
ωc , (13a)

Jsub(ω) =
λω

π1/2

(
ω

ωc

)−1/2

e−
ω
ωc , (13b)

Jsup(ω) =
λω3

2ω2
c

e−
ω
ωc . (13c)

Through the analyses in the above subsection, we can see
that the results of the quantum simulations are very co-
incident with those of the HEOM at high temperatures.
In the following, we also analyze the EET dynamics for
these three types of spectral densities.

Figure 3 presents the results of our quantum simulations
for Ohmic, sub-Ohmic and super-Ohmic spectral densi-
ties, with different geometries, i.e., r = 13.4 Å, r = 11.3 Å,
and r = 8 Å. In the numerical calculations, we take the
temperature as TEET = 3 × 105 K. Interestingly, we can
see that the EET dynamics is strongly dependent on the
type of spectral density adopted, i.e., the statistics of the
system-bath interactions. Therefore, it is crucial a simula-
tion method can accurately simulate all types of spectral
densities. Nevertheless, regardless of the form of the spec-
tral densities, the system identically reaches the equilib-
rium fastest when the intra-pair distance is r = 11.3 Å, cf.
Figs. 3(b1), (b2), (b3), compared with the other distances.
As r is reduced, the coherent oscillations in the popula-
tions of the donors becomes more and more profound, but
the EET times do not decrease monotonically. For these
three spectral densities, we may arrive at the same con-
clusion as the Drude–Lorentzian spectral density, that the
moderate-dimerized geometry explores the coherent relax-

ation within the donors to accelerate the energy transfer,
and the over-dimerization in the geometry significantly re-
duces the energy transfer rate, cf. Figs. 3(c1), (c2), (c3),
which is also consistent with the conclusion in Ref. [42].

Based on the above analysis, we demonstrate that this
quantum simulation approach can be used to investigate
the exact quantum dynamics for different Hamiltonians
and various types of spectral densities. It has been proven
that although theoretically the quantum dynamics with
arbitrary form of spectral density can be simulated by the
HEOM through spectral decomposition [27, 28], this may
be practically unfeasible. As will be shown in the Sec-
tion 3.4, the more complex the form of spectral density
is, the higher the computational complexity of the HEOM
will be. However, since the computational time of the
present simulation approach is not affected by the com-
plexity of the spectral density, we show the superiority
of our method over the HEOM in the high-temperature
limit.

3.3 Three-qubit system

In order to show its universality, we apply our ap-
proach to the simulation of quantum dynamics in
the reaction center of photosystem II, i.e., an 8-level
system. In the reaction center, both the charge sepa-
ration and electron transfer take place [66, 67]. Here,
a three-qubit system is employed in the quantum
simulation. We use the Hamiltonian in Ref. [68] as
the model to simulate the quantum dynamics, i.e.,

HNMR
2π

=



130.32 0.1859 −0.0652 −0.0032 −0.041 0.025 −0.037 0.6834
0.1859 128.64 1.2098 0.0072 −0.4515 −0.0282 0.0089 −0.627
−0.0652 1.2098 128.18 0.0072 −0.6745 0.1553 0.0032 −0.4749
−0.0032 0.0072 0.0072 128.14 0.0266 −0.0402 0.0024 0.00
−0.041 −0.4515 −0.6745 0.0266 127.97 0.6302 −0.0008 0.066
0.025 −0.0282 0.1553 −0.0402 0.6302 127.52 −0.0024 −0.037
−0.037 0.0089 0.0032 0.0024 −0.0008 −0.0024 127 0.0233
0.6834 −0.627 −0.4749 0.00 0.066 −0.037 0.0233 126.02


kHz. (14)

In addition, we assume Drude–Lorentz spectral density
as given in Eq. (6). In the simulations, we assume identical
phonon relaxation rates γNMR = γEET/C = 2π × 200 Hz
and identical reorganization energies λNMR = λEET/C =
2π × 0.5 Hz for all local baths. And we take the temper-
ature as TEET = 3 × 105 K and TNMR = 10−4 K in our
numerical calculations.

In Fig. 4, we compare the simulation results by the
HEOM, the random ensemble, and GRAPE algorithm.
Different from Fig. 1, there are no coherent oscillations at
the short-time regime due to the large detuning. The dy-
namics of populations monotonically arrive at the steady

state after several hundreds of milliseconds. Since the re-
sults of random ensemble and GRAPE algorithm are in
good agreement with those of the HEOM, we show that
our approach can be effectively generalized to an N -level
system with N > 4.

3.4 Computational costs of NMR simulation and
HEOM

In the above sections, we show the quantum simulations
of open quantum dynamics for a few-level system. Con-
sider an N -level open quantum system, where each level
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of the system is coupled with an independent bath, and
the correlation function of each bath contains K exponen-
tials. The total number of auxiliary density operators for
the HEOM is [43, 59]

I =

N∑
n=0

In =

N∑
n=0

(n+KN − 1)!

n!(KN − 1)!
=

(N +KN)!

N !(KN)!
, (15)

where N is the hierarchy level of truncation of the HEOM.
By using [69]

n! =
√
2πnn+ 1

2 e−nern , (16)

where (12n+1)−1 < rn < (12n)−1, we can obtain Eq. (15)
as

In =

√
1
N + 1

KN

2π

(
1 +

KN

N

)N(
1 +

N
KN

)KN

× exp(rN+KN − rN − rKN ). (17)

When the dimension of the system is large and the spectral
density is complex, i.e., KN → ∞, for a given hierarchy
level of truncation, the total number of auxiliary density
operators and thus the computation cost of the HEOM is
approximated as

lim
KN→∞

I ≃
√

1

2πN

(
1 +

KN

N

)N

eKN . (18)

On the other hand, for a log2 N -qubit quantum system,
the GRAPE algorithm requires [56]

(4M log2 N + 1)4log2 N = (4M log2 N + 1)N2 (19)

measurements in each iteration to estimate the fitness
function and its derivative with respect to the pulse am-
plitude, which the GRAPE aims to optimize. M is the
number of the pulse sequence to be divided, which scales
polynomially with the number of qubits [56]. Above all,
the complexity of the GRAPE algorithm is a polynomial
of N .

In practical simulations, the resources required by the
HEOM may be intolerable as complicated spectral den-
sities are widely observed in natural photosynthetic com-
plexes. According to Ref. [70], there are 42 chlorophylls in
a trimer of LHC II complex and its spectral density can
be described by an overdamped Brownian oscillator and
48 high-frequency modes, i.e., N = 42 and K = 49. We
remark that because of the specific mapping from N -level
photosynthetic energy transfer to log2 N -qubit quantum
simulation, the complexity has been greatly reduced.

3.5 Error analysis

From the above theoretical calculations, we can see that
there are some errors in the quantum simulations as com-
pared to the theoretically-exact results predicted by the

Fig. 4 Simulations of the dynamics in a three-qubit system
by the HEOM (curves) and GRAPE (symbols) and random
ensemble (broken curves). The last two are averaged over 600
random realizations. In all simulations, we take γNMR = 2π ×
200 Hz and λNMR = 2π × 0.5 Hz.

HEOM, especially when the number of random realiza-
tions in the ensemble is small. Theoretically, the average
over the ensemble is equal to the average over the time
only in the infinite-large ensemble limit [71]. However,
according to a large number of simulations, the quan-
tum simulations agree well with the HEOM for n ≥ 500.
For a given random Hamiltonian, the corresponding uni-
tary evolution can be decomposed into a sequence of
experimentally-feasible pulses by the GRAPE algorithm.
Here, the fidelity is limited by the initial guess of param-
eters, in combination with both the step and the number
of repetitions in attaining the global optimum [56].

In the aspect of NMR realization, there are three main
sources of errors. First of all, the prepared initial state
is a pseudo-pure state rather than a pure state. The
error caused by the preparation of the initial state can
be estimated by carrying out a full state tomography
and examining the fidelity F (ρP

T, ρ
P
e ) between the tar-

get density matrix ρP
T = |00⟩⟨00| and the experimental

density matrix ρP
e [72]. Here, the fidelity is defined as

F (ρ1, ρ2) = Tr(ρ1ρ2)/
√

Tr(ρ21)Tr(ρ22). Then, in the pro-
cess of quantum-state evolution, although the fidelity of
the unitary evolution UD calculated by the GRAPE al-
gorithm can nearly approach unity, e.g., F = 0.995 by
increasing the step of the repetition, there could still re-
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main imperfection in the experimental realization of the
pulse sequence. The error in this step can be also esti-
mated by the fidelity F (UDρP

TU
†
D, ρG

e ) with ρG
e obtained

by the tomography. Finally, further errors could be intro-
duced in the process of measurement. The error produced
in this step can be characterized by the fidelity between
the final state obtained from the experiment and the final
state of the theory.

4 Conclusion

In this paper, we discuss the recently-developed approach
for the exact simulation of EET dynamics in photosyn-
thesis. By applying the approach to the linear-tetramer
model, the energy transfer is shown to be optimal for a
moderately-clustered geometry. Based on the optimal ge-
omtry, we show that the energy transfer efficiency can be
further improved when the energy gap between the donor
and acceptor clusters matches the optimum of the bath’s
spectral density. In this regard, we demonstrate that the
light-harvesting network can be optimized from two as-
pects, i.e., the geometry [42] and the bath [49].

Beyond the Drude–Lorentz spectral density, we also
show that our approach can be utilized to simulate the
EET dynamics for various types of spectral densities. We
furthermore demonstrate our approach to the simulation
of a quantum system with N = 8, i.e., the reaction cen-
ter of PSII. Therefore, we can generalize our approach
to exactly simulate the open quantum dynamics with N
dimensions and different types of environments. By com-
paring our approach to the HEOM, the complexity is a
polynomial of the number of states involved and thus our
approach is exponentially accelerated when the system is
large and the spectral density is complicated. This is often
encountered when simulating open quantum dynamics for
natural photosynthesis. To conclude, our approach can be
applied to the exact and efficient simulation of open quan-
tum dynamics for various of Hamiltonians and spectral
densities. It may shed light on the investigations explor-
ing non-Markovianity in open quantum dynamics, e.g.,
quantum metrology in non-Markovian environments [65].

Appendices

A Initialization of quantum states

At the room temperature, the two-qubit system is initially
in thermal-equilibrium state [73], i.e.,

ρeq ≈ 1

4
σ
(0)
1 σ

(0)
2 + ϵ(γHσ

(3)
1 σ

(0)
2 + γCσ

(0)
1 σ

(3)
2 ), (A1)

where σ
(0)
j and σ

(α)
j (α = 1, 2, 3) are respectively the

unit matrix and Pauli operators of qubit j, ϵ ≈ 1.496 ×

10−13 rad−1 ·s·T characterizes polarization, γH = 2.675×
108 rad·s−1 ·T−1 and γC = 6.726× 107 rad·s−1 ·T−1 cor-
respond respectively to the gyromagnetic ratios of the 1H
and 13C nuclei [74]. In the experiment, by using the spa-
tial average method [75, 76], the system is prepared in the
pseudo-pure state as

ρ00 =
1− δ

4
σ
(0)
1 σ

(0)
2 + δ|00⟩⟨00|, (A2)

where δ ≃ 10−5. Since the unitary evolutions and mea-
surements have no effects on the unit matrix part, the
final results of the experiments are only influenced by the
second part, i.e., |00⟩.

B Bath-engineering

In the process of EET, the system generally interacts with
its environments. In the NMR systems, by artificially in-
jecting noise, the impact of the environment is effectively
simulated. This bath-engineering technique has been suc-
cessfully realized in ion traps and NMR [41, 53, 54, 61].

In order to mimic the system-bath interaction in
Eq. (3), we utilize a dephasing noise which comes from
the inhomogeneous and non-static magnetic fields in the
NMR systems. The Hamiltonian of the dephasing noise is

HPDN =
∑
m

βm(t)|m⟩⟨m|, (B1)

which relies on generating stochastic errors by performing
amplitude and phase modulations on a carrier, i.e.,

βm(t) =

Nc∑
j=1

α(m)
z F (ωj)ωj cos(ωjt+ ϕ

(m)
j ), (B2)

where α
(m)
z is the amplitude of the local noise on the state

|m⟩, the modulation function F (ω) characterizes the shape
of noise correlation function in the frequency domain, ϕ(m)

j

a random number, ωj = jω0 with Ncω0 and ω0 being cut-
off and base frequencies, respectively. In our simulations,
for any state |m⟩ we assume α

(m)
z = αz for simplicity.

The second-order correlation function of βm(t) is

⟨βm(t+ τ)βm(t)⟩

= lim
T→∞

1

2T

∫ T

−T

dtβm(t+ τ)βm(t)

= (
α
(m)
z

2
)2

∑
j

[ωjF (ωj)]
2(eiωjτ + e−iωjτ ). (B3)

By Fourier transform of the above equation, the power
spectral density of the noise can be obtained as

Sm(ω)
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=

∫ ∞

−∞
dτe−iωτ ⟨βm(t+ τ)βm(t)⟩

=
π(α

(m)
z )2

2

Nc∑
j=1

[ωjF (ωj)]
2[δ(ω − ωj)+δ(ω + ωj)]. (B4)

In obtaining Eq. (B3), we assume the average over the
ensemble is equivalent to the average over the time, which
is valid in the large-ensemble limit [71]. Furthermore, we
assume ϕ

(m)
j ’s are different for distinct |m⟩ to show that

the levels are subject to local noise. If we assume identical
ϕ
(m)
j ’s for different levels, the noise will be correlated and

thus we can simulate the photosynthetic light harvesting
in a common bath.

In Ref. [41], by the Ramsey fringe we have proven that
in order to simulate photosynthetic dynamics in NMR, the
following condition that

χ(t) = Re[g(Ct)], (B5)
ωL = (εD − εA)/C, (B6)

should be fulfilled. Here, the decoherence factor in NMR
simulation is

χ(t) = α2
z

Nc∑
j=1

[F (ωj)]
2 sin2 ωjt

2
, (B7)

and the lineshape function in photosynthesis reads

g(t) =
∑
k

g2k
ω2
k

[(1− cosωkt) cothβωk

2
+ i(sinωkt− ωkt)]

=

∫
dωJ(ω)

ω2
[(1− cosωt) cothβω

2
+ i(sinωt− ωt)],

(B8)

where J(ω) is the spectral density. For different environ-
mental spectral densities J(ω), the modulation function
F (ωj) can be derived from Eq. (B5). When we obtain the
modulation function, we can attain βm(t). Then, we can
obtain the noise Hamiltonian HPDN and thus the total
Hamiltonian H(t) = HNMR +HPDN. Afterwards, we can
design a series of GRAPE pulses to realize its correspond-
ing evolution operator U(t). In all, by tuning the base
frequency ω0, the cut-off frequency ωJ , the noise strength
αz, the coherence of photosynthesis and NMR simulation
will decay in the same way, except differed by a constant
C.

C Gradient ascent pulse engineering
algorithm

The GRAPE algorithm and its variants has become the
most commonly-used optimal-control theory for unitary
evolutions in NMR systems [55, 56]. For an N -qubit NMR
system, the total Hamiltonian Htot includes the internal

term Hint and the radio-frequency (RF) term HRF, and
thus reads

Htot =Hint +HRF, (C1)

HRF =−
2∑

k=1

γkBk[cos(ωRF
k t+ ϕRF

k )σ
(1)
k

+ sin(ωRF
k t+ ϕRF

k )σ
(2)
k ], (C2)

where Bk, ωRF
k and ϕRF

k are the amplitude, driving fre-
quency and phase of the control field on the kth nuclear
spin with gyromagnetic ratio γk, respectively.

The purpose of the GRAPE algorithm is to design a uni-
tary evolution UD by iteration to make it very close to the
target evolution UT , so as to find the optimal amplitudes
Bk and phases ϕRF

k of the control fields. The fidelity of UD

relative to UT can be expressed as F = |Tr(U†
TUD)|/22.

We assume that the total evolution time is T and is di-
vided into N steps, i.e., ∆t = T/N . And the amplitudes
and phases of the control fields within each step are con-
stant. Thus, in jth step, the time evolution operator of
the system can be expressed as

Uj = e−i∆t
(
Hint+

∑2
k=1

∑2
α=1 u

(α)
k (j)σ

(α)
k

)
, (C3)

where u
(1)
k (j) = γkBk cos(ωRF

k tj + ϕRF
k ) and u

(2)
k (j) =

γkBk sin(ωRF
k tj + ϕRF

k ) are assumed to be constant.
The total evolution operator of the system is UD =
UNUN−1 . . . U2U1. By calculating the derivative of the
fidelity F with respect to u

(α)
k (j), we can obtain

g
(α)
k (j) =

∂F

∂u
(α)
k (j)

≈ − 2

2n
Re[U†

TUN . . . Uj+1(−i∆tσ
(α)
k )Uj . . . U1].

(C4)

Afterwards, we replace u
(α)
k (j) by u

(α)
k (j) + ϵsg

(α)
k (j)

with ϵs the iteration step. By repeating the above steps,
we will find that the fidelity is increasing gradually. To
summarize the general steps of the GRAPE algorithm, we
set an initial value of u(α)

k (j), and calculate the derivative
of the fidelity g

(α)
k (j), and iterate until the fidelity changes

less than the selected threshold. After terminating the
algorithm, we shall perform the measurements to obtain
the final result.

D Tomography

In NMR, the free-induction decay (FID) signal is em-
ployed to measure the density matrix of the final state [74,
77–79], i.e.,

SU (t) ∝ Tr[e−iHinttUρU†eiHintt
2∑

k=1

(σ
(1)
k − iσ(2)

k )], (D1)
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where ρ is the density matrix after the above quantum
simulation approach has been applied,

Hint =
ω1

2
σ
(3)
1 +

ω2

2
σ
(3)
2 +

πJ

2
σ
(3)
1 σ

(3)
2 (D2)

is the internal Hamiltonian with ω1 = γCB, ω2 = γHB,
and J = 215.1 Hz [73].

All the elements of the density matrix can be given in
terms of the expectations of the 16 observables {σ(i)

1 ⊗
σ
(j)
2 } (i, j = 0, 1, 2, 3). In this paper, we mainly focus on

the diagonal elements of the density matrix, i.e.,

ρ11 =
1

4
[1 + ⟨σ(3)

1 σ
(0)
2 ⟩+ ⟨σ(0)

1 σ
(3)
2 ⟩+ ⟨σ(3)

1 σ
(3)
2 ⟩],

ρ22 =
1

4
[1 + ⟨σ(3)

1 σ
(0)
2 ⟩ − ⟨σ(0)

1 σ
(3)
2 ⟩ − ⟨σ(3)

1 σ
(3)
2 ⟩], (D3)

ρ33 =
1

4
[1− ⟨σ(3)

1 σ
(0)
2 ⟩+ ⟨σ(0)

1 σ
(3)
2 ⟩ − ⟨σ(3)

1 σ
(3)
2 ⟩].

By Fourier transform of Eq. (D1), the expectations of the
observables in Eq. (D3) can be written in terms of the FID
signals as

⟨σ(0)
1 σ

(3)
2 ⟩ = η

2
[Re(SIY

20 ) + Re(SIY
21 )],

⟨σ(3)
1 σ

(0)
2 ⟩ = η

2
[Re(SYI

10 ) + Re(SYI
11 )], (D4)

⟨σ(3)
1 σ

(3)
2 ⟩ = η

2
[Re(SIY

20 )− Re(SIY
21 )].

Here, Re(x) and Im(x) are respectively the real and imag-
inary parts of x, and η is a constant which replies on ex-
perimental details such as a receiver gain and the amount
of spins [77].

We also provide the off-diagonal terms of the density
matrix as follows:

ρ21=
1

4
[⟨σ(0)

1 σ
(1)
2 ⟩+⟨σ(3)

1 σ
(1)
2 ⟩+i(⟨σ(0)

1 σ
(2)
2 ⟩+⟨σ(3)

1 σ
(2)
2 ⟩)],

ρ31=
1

4
[⟨σ(1)

1 σ
(0)
2 ⟩+⟨σ(1)

1 σ
(3)
2 ⟩+i(⟨σ(2)

1 σ
(0)
2 ⟩+⟨σ(2)

1 σ
(3)
2 ⟩)],

ρ41=
1

4
[⟨σ(1)

1 σ
(1)
2 ⟩−⟨σ(2)

1 σ
(2)
2 ⟩+i(⟨σ(1)

1 σ
(2)
2 ⟩+⟨σ(2)

1 σ
(1)
2 ⟩)],

ρ32=
1

4
[⟨σ(1)

1 σ
(1)
2 ⟩+⟨σ(2)

1 σ
(2)
2 ⟩−i(⟨σ(1)

1 σ
(2)
2 ⟩−⟨σ(2)

1 σ
(1)
2 ⟩)],

ρ42=
1

4
[⟨σ(1)

1 σ
(0)
2 ⟩−⟨σ(1)

1 σ
(3)
2 ⟩+i(⟨σ(2)

1 σ
(0)
2 ⟩−⟨σ(2)

1 σ
(3)
2 ⟩)],

ρ43=
1

4
[⟨σ(0)

1 σ
(1)
2 ⟩−⟨σ(3)

1 σ
(1)
2 ⟩+i(⟨σ(0)

1 σ
(2)
2 ⟩+⟨σ(3)

1 σ
(2)
2 ⟩)],

(D5)

where the expectations of the observables are respectively
written in terms of the FID signals as

⟨σ(0)
1 σ

(1)
2 ⟩ = η

2
[Re(SYI

20 ) + Re(SYI
21 )],

⟨σ(0)
1 σ

(2)
2 ⟩ = η

2
[Im(SYI

20 ) + Im(SYI
21 )],

⟨σ(1)
1 σ

(0)
2 ⟩ = η

2
[Re(SIY

10 ) + Re(SIY
11 )],

⟨σ(1)
1 σ

(1)
2 ⟩ = η

2
[Re(SIY

11 )− Re(SIY
10 )],

⟨σ(1)
1 σ

(2)
2 ⟩ = η

2
[Im(SYI

21 )− Im(SYI
20 )],

⟨σ(1)
1 σ

(3)
2 ⟩ = η

2
[Re(SXI

10 )− Re(SXI
11 )], (D6)

⟨σ(2)
1 σ

(0)
2 ⟩ = η

2
[Im(SIY

10 ) + Im(SIY
11 )],

⟨σ(2)
1 σ

(1)
2 ⟩ = η

2
[Re(SIY

11 )− Re(SIY
10 )],

⟨σ(2)
1 σ

(2)
2 ⟩ = η

2
[Im(SXI

20 )− Im(SXI
21 )],

⟨σ(2)
1 σ

(3)
2 ⟩ = η

2
[Im(SYI

10 )− Im(SYI
11 )],

⟨σ(3)
1 σ

(1)
2 ⟩ = η

2
[Re(SIX

20 )− Re(SIX
21 )],

⟨σ(3)
1 σ

(2)
2 ⟩ = η

2
[Im(SIY

20 )− Im(SIY
21 )].

E Optimizing EET by bath

In Fig. 2, we show that the optimization of the EET can be
also achieved when the energy gap of the system matches
the optimum in the spectral density. In order to eluci-
date the underlying physical mechanism, we resort to the
energy diagram of the system. Sites 1 and 2 form the
donor cluster due to their strong coupling, while sites 3
and 4 form the acceptor cluster as shown in Fig. 1(a).
By diagonalizing the Hamiltonians of donor and acceptor
subsystems respectively, i.e.,

H12
S = ε1|1⟩⟨1|+ ε2|2⟩⟨2|+ J12|1⟩⟨2|+ J21|2⟩⟨1|, (E1a)

H34
S = ε3|3⟩⟨3|+ ε4|4⟩⟨4|+ J34|3⟩⟨4|+ J43|4⟩⟨3|, (E1b)

we can obtain the eigen-states as

|E1⟩ = cos θ12
2

|1⟩+ sin θ12
2

|2⟩, (E2a)

|E2⟩ = sin θ12
2

|1⟩ − cos θ12
2

|2⟩, (E2b)

|E3⟩ = cos θ34
2

|3⟩+ sin θ34
2

|4⟩, (E2c)

|E4⟩ = sin θ34
2

|3⟩ − cos θ34
2

|4⟩, (E2d)

where θj,j+1 = arctan
(

2Jj,j+1

εj−εj+1

)
(j = 1, 3) are the mixing

angles. And the corresponding eigen-energies are respec-
tively

E1 =
ε1 + ε2

2
+

√(
ε1 − ε2

2

)2

+ J2
12, (E3a)

E2 =
ε1 + ε2

2
−

√(
ε1 − ε2

2

)2

+ J2
12, (E3b)

E3 =
ε3 + ε4

2
+

√(
ε3 − ε4

2

)2

+ J2
34, (E3c)
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E4 =
ε3 + ε4

2
−

√(
ε3 − ε4

2

)2

+ J2
34. (E3d)

Because the donor and acceptor clusters are weakly cou-
pled, the Förster mechanism can be utilized to describe
the inter-cluster EET. As a result, the optimal γopt

NMR co-
incides with the energy gap between the lower eigen-state
of the donor cluster and the higher eigen-state of the ac-
ceptor cluster, i.e., γopt

NMR = E2 −E3. Above all, based on
the optimal geometry, we can further optimize the energy-
transfer efficiency by tuning the bath to match the energy
gap of the system.

Acknowledgements We thank the kind guidance from Yuan-
Chung Cheng. We thank the critical comments from J.-S. Shao,
and valuable discussions with B. X. Wang and J. W. Wen. This
work was supported by the National Natural Science Foundation
of China under Grant Nos. 11674033, 11474026, and 11505007, and
Beijing Natural Science Foundation under Grant No. 1202017. N.
L. acknowledges partial support from JST PRESTO through Grant
No. JPMJPR18GC.

References

1. G. R. Fleming and R. Grondelle, The primary steps of
photosynthesis, Phys. Today 47(2), 48 (1994)

2. Y. C. Cheng and G. R. Fleming, Dynamics of light har-
vesting in photosynthesis, Annu. Rev. Phys. Chem. 60(1),
241 (2009)

3. M. J. Tao, N. N. Zhang, P. Y. Wen, F. G. Deng, Q. Ai,
and G. L. Long, Coherent and incoherent theories for pho-
tosynthetic energy transfer, Sci. Bull. (Beijing) 65(4), 318
(2020)

4. M. J. Tao, M. Hua, N. N. Zhang, W. T. He, Q. Ai, and
F. G. Deng, Quantum simulation of clustered photosyn-
thetic light harvesting in a superconducting quantum cir-
cuit, Quantum Eng. 2(3), e53 (2020)

5. N. Lambert, Y. N. Chen, Y. C. Cheng, C. M. Li, G. Y.
Chen, and F. Nori, Quantum biology, Nat. Phys. 9(1), 10
(2013)

6. J. S. Cao, R. J. Cogdell, D. F. Coker, H. G. Duan, J.
Hauer, U. Kleinekathöfer, T. L. C. Jansen, T. Mančal, R.
J. D. Miller, J. P. Ogilvie, V. I. Prokhorenko, T. Renger,
H. S. Tan, R. Tempelaar, M. Thorwart, E. Thyrhaug, S.
Westenhoff, and D. Zigmantas, Quantum biology revisited,
Sci. Adv. 6(14), eaaz4888 (2020)

7. G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn,
T. Mančal, Y. C. Cheng, R. E. Blankenship, and G. R.
Fleming, Evidence for wavelike energy transfer through
quantum coherence in photosynthetic systems, Nature
446(7137), 782 (2007)

8. H. Lee, Y. C. Cheng, and G. R. Fleming, Coherence dy-
namics in photosynthesis: Protein protection of excitonic
coherence, Science 316(5830), 1462 (2007)

9. P. G. Wolynes, Some quantum weirdness in physiology,
Proc. Natl. Acad. Sci. USA 106(41), 17247 (2009)

10. E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P.
Brumer, and G. D. Scholes, Coherently wired lightharvest-
ing in photosynthetic marine algae at ambient tempera-
ture, Nature 463(7281), 644 (2010)

11. R. Hildner, D. Brinks, J. B. Nieder, R. J. Cogdell, and N.
F. van Hulst, Quantum coherent energy transfer over vary-
ing pathways in single light-harvesting complexes, Science
340(6139), 1448 (2013)

12. M. J. Tao, Q. Ai, F. G. Deng, and Y. C. Cheng, Proposal
for probing energy transfer pathway by single-molecule
pump-dump experiment, Sci. Rep. 6(1), 27535 (2016)

13. L. G. Mourokh and F. Nori, Energy transfer efficiency in
the chromophore network strongly coupled to a vibrational
mode, Phys. Rev. E 92(5), 052720 (2015)

14. H. P. Breuer, E. M. Laine, J. Piilo, and B. Vacchini, Non-
Markovian dynamics in open quantum systems, Rev. Mod.
Phys. 88(2), 021002 (2016)

15. I. de Vega and D. Alonso, Dynamics of non-Markovian
open quantum systems, Rev. Mod. Phys. 89(1), 015001
(2017)

16. L. Li, M. J. W. Hall, and H. M. Wiseman, Concepts of
quantum non-Markovianity: A hierarchy, Phys. Rep. 759,
1 (2018)

17. H. P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems, Oxford University Press, New York,
2007

18. A. Ishizaki and G. R. Fleming, On the adequacy of the
Redfield equation and related approaches to the study of
quantum dynamics in electronic energy transfer, J. Chem.
Phys. 130(23), 234110 (2009)

19. G. Watanabe, Heat engines using small quantum systems,
AAPPS Bull. 29, 30 (2019)

20. J. X. Zhao, J. J. Cheng, Y. Q. Chu, Y. X. Wang, F. G.
Deng, and Q. Ai, Hyperbolic metamaterial using chiral
molecules, Sci. China Phys. Mech. Astron. 63(6), 260311
(2020)

21. Y. Tanimura, Stochastic Liouville, Langevin, Fokker-
Planck, and master equation approaches to quantum dis-
sipative systems, J. Phys. Soc. Jpn. 75(8), 082001 (2006)

22. A. Ishizaki and G. R. Fleming, Unified treatment of quan-
tum coherent and incoherent hopping dynamics in elec-
tronic energy transfer: Reduced hierarchy equation ap-
proach, J. Chem. Phys. 130(23), 234111 (2009)

23. Y. Yan, F. Yan, Y. Liu, and J. Shao, Hierarchical ap-
proach based on stochastic decoupling to dissipative sys-
tems, Chem. Phys. Lett. 395(4–6), 216 (2004)

24. Y. Zhou, Y. Yan, and J. Shao, Stochastic simulation of
quantum dissipative dynamics, Europhys. Lett. 72(3), 334
(2005)

25. J. Shao, Decoupling quantum dissipation interaction via
stochastic fields, J. Chem. Phys. 120(11), 5053 (2004)

26. Z. F. Tang, X. L. Ouyang, Z. H. Gong, H. B. Wang, and
J. L. Wu, Extended hierarchy equation of motion for the
spin-boson model, J. Chem. Phys. 143(22), 224112 (2015)

27. H. Liu, L. L. Zhu, S. M. Bai, and Q. Shi, Reduced quantum
dynamics with arbitrary bath spectral densities: Hierar-
chical equations of motion based on several different bath
decomposition schemes, J. Chem. Phys. 140(13), 134106
(2014)

51501-12 Na-Na Zhang, et al., Front. Phys. 16(5), 51501 (2021)

https://doi.org/10.1063/1.881413
https://doi.org/10.1063/1.881413
https://doi.org/10.1146/annurev.physchem.040808.090259
https://doi.org/10.1146/annurev.physchem.040808.090259
https://doi.org/10.1146/annurev.physchem.040808.090259
https://doi.org/10.1016/j.scib.2019.12.009
https://doi.org/10.1016/j.scib.2019.12.009
https://doi.org/10.1016/j.scib.2019.12.009
https://doi.org/10.1016/j.scib.2019.12.009
https://doi.org/10.1002/que2.53
https://doi.org/10.1002/que2.53
https://doi.org/10.1002/que2.53
https://doi.org/10.1002/que2.53
https://doi.org/10.1038/nphys2474
https://doi.org/10.1038/nphys2474
https://doi.org/10.1038/nphys2474
https://doi.org/10.1126/sciadv.aaz4888
https://doi.org/10.1126/sciadv.aaz4888
https://doi.org/10.1126/sciadv.aaz4888
https://doi.org/10.1126/sciadv.aaz4888
https://doi.org/10.1126/sciadv.aaz4888
https://doi.org/10.1126/sciadv.aaz4888
https://doi.org/10.1038/nature05678
https://doi.org/10.1038/nature05678
https://doi.org/10.1038/nature05678
https://doi.org/10.1038/nature05678
https://doi.org/10.1038/nature05678
https://doi.org/10.1126/science.1142188
https://doi.org/10.1126/science.1142188
https://doi.org/10.1126/science.1142188
https://doi.org/10.1073/pnas.0909421106
https://doi.org/10.1073/pnas.0909421106
https://doi.org/10.1038/nature08811
https://doi.org/10.1038/nature08811
https://doi.org/10.1038/nature08811
https://doi.org/10.1038/nature08811
https://doi.org/10.1126/science.1235820
https://doi.org/10.1126/science.1235820
https://doi.org/10.1126/science.1235820
https://doi.org/10.1126/science.1235820
https://doi.org/10.1038/srep27535
https://doi.org/10.1038/srep27535
https://doi.org/10.1038/srep27535
https://doi.org/10.1103/PhysRevE.92.052720
https://doi.org/10.1103/PhysRevE.92.052720
https://doi.org/10.1103/PhysRevE.92.052720
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1016/j.physrep.2018.07.001
https://doi.org/10.1016/j.physrep.2018.07.001
https://doi.org/10.1016/j.physrep.2018.07.001
https://doi.org/10.1063/1.3155214
https://doi.org/10.1063/1.3155214
https://doi.org/10.1063/1.3155214
https://doi.org/10.1063/1.3155214
https://doi.org/10.1007/s11433-019-1470-6
https://doi.org/10.1007/s11433-019-1470-6
https://doi.org/10.1007/s11433-019-1470-6
https://doi.org/10.1007/s11433-019-1470-6
https://doi.org/10.1143/JPSJ.75.082001
https://doi.org/10.1143/JPSJ.75.082001
https://doi.org/10.1143/JPSJ.75.082001
https://doi.org/10.1063/1.3155372
https://doi.org/10.1063/1.3155372
https://doi.org/10.1063/1.3155372
https://doi.org/10.1063/1.3155372
https://doi.org/10.1016/j.cplett.2004.07.036
https://doi.org/10.1016/j.cplett.2004.07.036
https://doi.org/10.1016/j.cplett.2004.07.036
https://doi.org/10.1209/epl/i2005-10262-4
https://doi.org/10.1209/epl/i2005-10262-4
https://doi.org/10.1209/epl/i2005-10262-4
https://doi.org/10.1063/1.1647528
https://doi.org/10.1063/1.1647528
https://doi.org/10.1063/1.4936924
https://doi.org/10.1063/1.4936924
https://doi.org/10.1063/1.4936924
https://doi.org/10.1063/1.4870035
https://doi.org/10.1063/1.4870035
https://doi.org/10.1063/1.4870035
https://doi.org/10.1063/1.4870035
https://doi.org/10.1063/1.4870035


Research article

28. M. Schröder, M. Schreiber, and U. Kleinekathöfer, Re-
duced dynamics of coupled harmonic and anharmonic os-
cillators using higherorder perturbation theory, J. Chem.
Phys. 126(11), 114102 (2007)

29. A. Olaya-Castro, C. F. Lee, F. F. Olsen, and N. F. John-
son, Efficiency of energy transfer in a light-harvesting sys-
tem under quantum coherence, Phys. Rev. B 78(8), 085115
(2008)

30. Q. Ai, Y. J. Fan, B. Y. Jin, and Y. C. Cheng, An effi-
cient quantum jump method for coherent energy transfer
dynamics in photosynthetic systems under the influence of
laser fields, New J. Phys. 16(5), 053033 (2014)

31. S. Jang, Y. C. Cheng, D. R. Reichman, and J. D. Eaves,
Theory of coherent resonance energy transfer, J. Chem.
Phys. 129(10), 101104 (2008)

32. M. Yang and G. R. Fleming, Influence of phonons on
exciton transfer dynamics: Comparison of the Redfield,
F�rster, and modified Redfield equations, Chem. Phys.
282(1), 163 (2002)

33. Y. H. Hwang-Fu, W. Chen, and Y. C. Cheng, A coherent
modified Redfield theory for excitation energy transfer in
molecular aggregates, Chem. Phys. 447, 46 (2015)

34. H. Dong, D. Z. Xu, J. F. Huang, and C. P. Sun, Coherent
excitation transfer via the dark-state channel in a bionic
system, Light Sci. Appl. 1(3), e2 (2012)

35. S. Mostarda, F. Levi, D. Prada-Gracia, F. Mintert, and F.
Rao, Structure-dynamics relationship in coherent trans-
port through disordered systems, Nat. Commun. 4(1),
2296 (2013)

36. G. C. Knee, P. Rowe, L. D. Smith, A. Troisi, and A. Datta,
Structure-dynamics relation in physically-plausible multi-
chromophore systems, J. Phys. Chem. Lett. 8(10), 2328
(2017)

37. T. Zech, R. Mulet, T. Wellens, and A. Buchleitner, Cen-
trosymmetry enhances quantum transport in disordered
molecular networks, New J. Phys. 16(5), 055002 (2014)

38. L. Xu, Z. R. Gong, M. J. Tao, and Q. Ai, Artificial light
harvesting by dimerized Möbius ring, Phys. Rev. E 97(4),
042124 (2018)

39. Y. H. Lui, B. Zhang, and S. Hu, Rational design of pho-
toelectrodes for photoelectrochemical water splitting and
CO2 reduction, Front. Phys. 14(5), 53402 (2019)

40. L. Ju, M. Bie, X. Zhang, X. Chen, and L. Kou, Two-
dimensional Janus van der Waals heterojunctions: A re-
view of recent research progresses, Front. Phys. 16(1),
13201 (2021)

41. B. X. Wang, M. J. Tao, Q. Ai, T. Xin, N. Lambert, D.
Ruan, Y. C. Cheng, F. Nori, F. G. Deng, and G. L. Long,
Efficient quantum simulation of photosynthetic light har-
vesting, npj Quantum Inf. 4, 52 (2018)

42. Q. Ai, T. C. Yen, B. Y. Jin, and Y. C. Cheng, Clustered
geometries exploiting quantum coherence effects for effi-
cient energy transfer in light harvesting, J. Phys. Chem.
Lett. 4(15), 2577 (2013)

43. Q. Shi, L. Chen, G. Nan, R. X. Xu, and Y. J. Yan, Efficient
hierarchical liouville space propagetor to quantum dissipa-
tive dynamics, J. Chem. Phys. 130(8), 084105 (2009)

44. I. Buluta and F. Nori, Quantum simulators, Science
326(5949), 108 (2009)

45. I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simu-
lation, Rev. Mod. Phys. 86(1), 153 (2014)

46. J. Xu, S. Li, T. Chen, and Z.Y. Xue, Nonadiabatic geo-
metric quantum computation with optimal control on su-
perconducting circuits, Front. Phys. 15(4), 41503 (2020)

47. Z. D. Ye, D. Pan, Z. Sun, C. G. Du, L. G. Yin, and G.
L. Long, Generic security analysis framework for quantum
secure direct communication, Front. Phys. 16(2), 21503
(2021)

48. Y. F. Yan, L. Zhou, W. Zhong, and Y. B. Sheng,
Measurementdevice-independent quantum key distribu-
tion of multiple degrees of freedom of a single photon,
Front. Phys. 16(1), 11501 (2021)

49. M. Rey, A. W. Chin, S. F. Huelga, and M. B. Plenio, Ex-
ploiting structured environments for efficient energy trans-
fer: The phonon antenna mechanism, J. Phys. Chem. Lett.
4(6), 903 (2013)

50. D. J. Gorman, B. Hemmerling, E. Megidish, S. A. Moeller,
P. Schindler, M. Sarovar, and H. Haeffner, Engineering vi-
brationally assisted energy transfer in a trapped-ion quan-
tum simulator, Phys. Rev. X 8(1), 011038 (2018)

51. Y. Chang and Y. C. Cheng, On the accuracy of coherent
modified Redfield theory in simulating excitation energy
transfer dynamics, J. Chem. Phys. 142(3), 034109 (2015)

52. C. Meier and D. J. Tannor, Non-Markovian evolution of
the density operator in the presence of strong laser fields,
J. Chem. Phys. 111(8), 3365 (1999)

53. A. Soare, H. Ball, D. Hayes, J. Sastrawan, M. C. Jarratt,
J. J. McLoughlin, X. Zhen, T. J. Green, and M. J. Bier-
cuk, Experimental noise filtering by quantum control, Nat.
Phys. 10(11), 825 (2014)

54. A. Soare, H. Ball, D. Hayes, X. Zhen, M. C. Jarratt, J.
Sastrawan, H. Uys, and M. J. Biercuk, Experimental bath
engineering for quantitative studies of quantum control,
Phys. Rev. A 89(4), 042329 (2014)

55. N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen,
and S. J. Glaser, Optimal control of coupled spin dynam-
ics: Design of NMR pulse sequences by gradient ascent
algorithms, J. Magn. Reson. 172(2), 296 (2005)

56. J. Li, X. D. Yang, X. H. Peng, and C. P. Sun, Hybrid
quantum-classical approach to quantum optimal control,
Phys. Rev. Lett. 118(15), 150503 (2017)

57. P. Fulde, Wavefunctions for extended electron systems,
AAPPS Bull. 29, 50 (2019)

58. L. Valkunas, D. Abramavicius, and T. Mančal, Molecular
Excitation Dynamics and Relaxation: Quantum Theory
and Spectroscopy, Wiley-VCH, Weinheim, Germany, 2013

59. A. Ishizaki, and G. R. Fleming, Theoretical examination
of quantum coherence in a photosythetic system at physi-
ological temperature, Proc. Natl. Acad. Sci. USA 106(41),
17255 (2009)

60. W. Jiang, F. Z. Wu, and G. J. Yang, Non-Markovian
entanglement dynamics of open quantum systems with
continuous measurement feedback, Phys. Rev. A 98(5),
052134 (2018)

51501-13 Na-Na Zhang, et al., Front. Phys. 16(5), 51501 (2021)

https://doi.org/10.1063/1.2538754
https://doi.org/10.1063/1.2538754
https://doi.org/10.1063/1.2538754
https://doi.org/10.1063/1.2538754
https://doi.org/10.1103/PhysRevB.78.085115
https://doi.org/10.1103/PhysRevB.78.085115
https://doi.org/10.1103/PhysRevB.78.085115
https://doi.org/10.1103/PhysRevB.78.085115
https://doi.org/10.1088/1367-2630/16/5/053033
https://doi.org/10.1088/1367-2630/16/5/053033
https://doi.org/10.1088/1367-2630/16/5/053033
https://doi.org/10.1088/1367-2630/16/5/053033
https://doi.org/10.1063/1.2977974
https://doi.org/10.1063/1.2977974
https://doi.org/10.1063/1.2977974
https://doi.org/10.1016/S0301-0104(02)00604-3
https://doi.org/10.1016/S0301-0104(02)00604-3
https://doi.org/10.1016/S0301-0104(02)00604-3
https://doi.org/10.1016/S0301-0104(02)00604-3
https://doi.org/10.1016/j.chemphys.2014.11.026
https://doi.org/10.1016/j.chemphys.2014.11.026
https://doi.org/10.1016/j.chemphys.2014.11.026
https://doi.org/10.1038/lsa.2012.2
https://doi.org/10.1038/lsa.2012.2
https://doi.org/10.1038/lsa.2012.2
https://doi.org/10.1038/ncomms3296
https://doi.org/10.1038/ncomms3296
https://doi.org/10.1038/ncomms3296
https://doi.org/10.1038/ncomms3296
https://doi.org/10.1021/acs.jpclett.7b00829
https://doi.org/10.1021/acs.jpclett.7b00829
https://doi.org/10.1021/acs.jpclett.7b00829
https://doi.org/10.1021/acs.jpclett.7b00829
https://doi.org/10.1088/1367-2630/16/5/055002
https://doi.org/10.1088/1367-2630/16/5/055002
https://doi.org/10.1088/1367-2630/16/5/055002
https://doi.org/10.1103/PhysRevE.97.042124
https://doi.org/10.1103/PhysRevE.97.042124
https://doi.org/10.1103/PhysRevE.97.042124
https://doi.org/10.1007/s11467-019-0903-6
https://doi.org/10.1007/s11467-019-0903-6
https://doi.org/10.1007/s11467-019-0903-6
https://doi.org/10.1007/s11467-020-1002-4
https://doi.org/10.1007/s11467-020-1002-4
https://doi.org/10.1007/s11467-020-1002-4
https://doi.org/10.1007/s11467-020-1002-4
https://doi.org/10.1021/jz4011477
https://doi.org/10.1021/jz4011477
https://doi.org/10.1021/jz4011477
https://doi.org/10.1021/jz4011477
https://doi.org/10.1063/1.3077918
https://doi.org/10.1063/1.3077918
https://doi.org/10.1063/1.3077918
https://doi.org/10.1126/science.1177838
https://doi.org/10.1126/science.1177838
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1007/s11467-020-0976-2
https://doi.org/10.1007/s11467-020-0976-2
https://doi.org/10.1007/s11467-020-0976-2
https://doi.org/10.1007/s11467-020-1025-x
https://doi.org/10.1007/s11467-020-1025-x
https://doi.org/10.1007/s11467-020-1025-x
https://doi.org/10.1007/s11467-020-1025-x
https://doi.org/10.1007/s11467-020-1005-1
https://doi.org/10.1007/s11467-020-1005-1
https://doi.org/10.1007/s11467-020-1005-1
https://doi.org/10.1007/s11467-020-1005-1
https://doi.org/10.1021/jz400058a
https://doi.org/10.1021/jz400058a
https://doi.org/10.1021/jz400058a
https://doi.org/10.1021/jz400058a
https://doi.org/10.1103/PhysRevX.8.011038
https://doi.org/10.1103/PhysRevX.8.011038
https://doi.org/10.1103/PhysRevX.8.011038
https://doi.org/10.1103/PhysRevX.8.011038
https://doi.org/10.1063/1.4905721
https://doi.org/10.1063/1.4905721
https://doi.org/10.1063/1.4905721
https://doi.org/10.1063/1.479669
https://doi.org/10.1063/1.479669
https://doi.org/10.1063/1.479669
https://doi.org/10.1038/nphys3115
https://doi.org/10.1038/nphys3115
https://doi.org/10.1038/nphys3115
https://doi.org/10.1038/nphys3115
https://doi.org/10.1103/PhysRevA.89.042329
https://doi.org/10.1103/PhysRevA.89.042329
https://doi.org/10.1103/PhysRevA.89.042329
https://doi.org/10.1103/PhysRevA.89.042329
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1103/PhysRevLett.118.150503
https://doi.org/10.1103/PhysRevLett.118.150503
https://doi.org/10.1103/PhysRevLett.118.150503
https://doi.org/10.1073/pnas.0908989106
https://doi.org/10.1073/pnas.0908989106
https://doi.org/10.1073/pnas.0908989106
https://doi.org/10.1073/pnas.0908989106
https://doi.org/10.1103/PhysRevA.98.052134
https://doi.org/10.1103/PhysRevA.98.052134
https://doi.org/10.1103/PhysRevA.98.052134
https://doi.org/10.1103/PhysRevA.98.052134


Research article

61. X. L. Zhen, F. H. Zhang, G. Y. Feng, L. Hang, and G.
L. Long, Optimal experimental dynamical decoupling of
both longitudinal and transverse relaxations, Phys. Rev.
A 93(2), 022304 (2016)

62. Y. H. Ma, H. Dong, H. T. Quan, and C. P. Sun, The
uniqueness of the integration factor associated with the ex-
changed heat in thermodynamics, Fundamental Research
1(1), 6 (2021)

63. A. J. Leggett, S. Chakravarty, A. Dorsey, M. Fisher,
A. Garg, and W. Zwerger, Dynamics of the dissipative
twostate system, Rev. Mod. Phys. 59(1), 1 (1987)

64. U. Weiss, Quantum Dissipative Systems, World Scientific,
Singapore, 2008

65. A. W. Chin, S. F. Huelga, and M. B. Plenio, Quantum
metrology in non-Markovian environments, Phys. Rev.
Lett. 109(23), 233601 (2012)

66. H. G. Duan, V. I. Prokhorenko, E. Wientjes, R. Croce,
M. Thorwart, and R. J. D. Miller, Primary charge sepa-
ration in the photosystem II reaction center revealed by a
global analysis of the two-dimensional electronic spectra,
Sci. Rep. 7(1), 12347 (2017)

67. K. L. M. Lewis, F. D. Fuller, J. A. Myers, C. F. Yocum, D.
Abramavicius, and J. P. Ogilvie, Simulations of the two-
dimensional electronic spectroscopy of the photosystem II
reaction center, J. Phys. Chem. A 117(1), 34 (2013)

68. L. Zhang, D. A. Silva, H. D. Zhang, A. Yue, Y. J. Yan,
and X. H. Huang, Dynamic protein conformations prefer-
entially drive energy transfer along the active chain of the
photosystem II reaction centre, Nat. Commun. 5(1), 4170
(2014)

69. H. Robbins, A remark on Stirling’s formula, Am. Math.
Mon. 62, 26 (1955)

70. V. I. Novoderezhkin, M. A. Palacios, H. van Amerongen,
and R. van Grondelle, Energy-transfer dynamics in the
LHCII complex of higher plants: Modified Redfield ap-
proach, J. Phys. Chem. B 108(29), 10363 (2004)

71. J. W. Goodman, Statistical Optics, 2nd Ed., Wiley, Hobo-
ken, NJ, 2015

72. D. W. Lu, N. Y. Xu, R. X. Xu, H. W. Chen, J. B. Gong,
X. H. Peng, and J. F. Du, Simulation of chemical isomer-
ization reaction dynamics on a NMR quantum simulator,
Phys. Rev. Lett. 107(2), 020501 (2011)

73. I. L. Chuang, L. M. K. Vandersypen, X. L. Zhou, D. W.
Leung, and S. Lloyd, Experimental realization of a quan-
tum algorithm, Nature 393(6681), 143 (1998)

74. L. M. K. Vandersypen and I. Chuang, NMR techniques for
quantum control and computation, Rev. Mod. Phys. 76(4),
1037 (2005)

75. E. Knill, I. Chuang, and R. Laflamme, Effective pure states
for bulk quantum computation, Phys. Rev. A 57(5), 3348
(1998)

76. D. G. Cory, M. D. Price, and T. F. Havel, Nuclear mag-
netic resonance spectroscopy: An experimentally accessi-
ble paradigm for quantum computing, Physica D 120(1–2),
82 (1998)

77. J. S. Lee, The quantum state tomography on an NMR
system, Phys. Lett. A 305(6), 349 (2002)

78. D. W. Lu, T. Xin, N. K. Yu, Z. F. Ji, J. X. Chen, G. L.
Long, J. Baugh, X. H. Peng, B. Zeng, and R. Laflamme,
Tomography is necessary for universal entanglement detec-
tion with single-copy observables, Phys. Rev. Lett. 116(23),
230501 (2016)

79. T. Xin, D. W. Lu, J. Klassen, N. K. Yu, Z. F. Ji, J. X.
Chen, X. Ma, G. L. Long, B. Zeng, and R. Laflamme,
Quantum state tomography via reduced density matrices,
Phys. Rev. Lett. 118(2), 020401 (2017)

51501-14 Na-Na Zhang, et al., Front. Phys. 16(5), 51501 (2021)

https://doi.org/10.1103/PhysRevA.93.022304
https://doi.org/10.1103/PhysRevA.93.022304
https://doi.org/10.1103/PhysRevA.93.022304
https://doi.org/10.1103/PhysRevA.93.022304
https://doi.org/10.1016/j.fmre.2020.11.003
https://doi.org/10.1016/j.fmre.2020.11.003
https://doi.org/10.1016/j.fmre.2020.11.003
https://doi.org/10.1016/j.fmre.2020.11.003
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/PhysRevLett.109.233601
https://doi.org/10.1103/PhysRevLett.109.233601
https://doi.org/10.1103/PhysRevLett.109.233601
https://doi.org/10.1038/s41598-017-12564-4
https://doi.org/10.1038/s41598-017-12564-4
https://doi.org/10.1038/s41598-017-12564-4
https://doi.org/10.1038/s41598-017-12564-4
https://doi.org/10.1038/s41598-017-12564-4
https://doi.org/10.1021/jp3081707
https://doi.org/10.1021/jp3081707
https://doi.org/10.1021/jp3081707
https://doi.org/10.1021/jp3081707
https://doi.org/10.1038/ncomms5170
https://doi.org/10.1038/ncomms5170
https://doi.org/10.1038/ncomms5170
https://doi.org/10.1038/ncomms5170
https://doi.org/10.1038/ncomms5170
https://doi.org/10.1038/ncomms5170
https://doi.org/10.1038/ncomms5170
https://doi.org/10.1021/jp0496001
https://doi.org/10.1021/jp0496001
https://doi.org/10.1021/jp0496001
https://doi.org/10.1021/jp0496001
https://doi.org/10.1103/PhysRevLett.107.020501
https://doi.org/10.1103/PhysRevLett.107.020501
https://doi.org/10.1103/PhysRevLett.107.020501
https://doi.org/10.1103/PhysRevLett.107.020501
https://doi.org/10.1038/30181
https://doi.org/10.1038/30181
https://doi.org/10.1038/30181
https://doi.org/10.1103/RevModPhys.76.1037
https://doi.org/10.1103/RevModPhys.76.1037
https://doi.org/10.1103/RevModPhys.76.1037
https://doi.org/10.1103/PhysRevA.57.3348
https://doi.org/10.1103/PhysRevA.57.3348
https://doi.org/10.1103/PhysRevA.57.3348
https://doi.org/10.1016/S0167-2789(98)00046-3
https://doi.org/10.1016/S0167-2789(98)00046-3
https://doi.org/10.1016/S0167-2789(98)00046-3
https://doi.org/10.1016/S0167-2789(98)00046-3
https://doi.org/10.1016/S0375-9601(02)01479-2
https://doi.org/10.1016/S0375-9601(02)01479-2
https://doi.org/10.1103/PhysRevLett.116.230501
https://doi.org/10.1103/PhysRevLett.116.230501
https://doi.org/10.1103/PhysRevLett.116.230501
https://doi.org/10.1103/PhysRevLett.116.230501
https://doi.org/10.1103/PhysRevLett.116.230501
https://doi.org/10.1103/PhysRevLett.118.020401
https://doi.org/10.1103/PhysRevLett.118.020401
https://doi.org/10.1103/PhysRevLett.118.020401
https://doi.org/10.1103/PhysRevLett.118.020401

	Introduction
	Theory for quantum simulation
	Model photosynthetic system
	Hierarchical equation of motion method
	The process of quantum simulation

	Numerical calculation and analysis
	Simultaneous optimization by geometry and bath
	Application to complicated spectral densities
	Three-qubit system
	Computational costs of NMR simulation and HEOM
	Error analysis

	Conclusion
	Initialization of quantum states
	Bath-engineering
	Gradient ascent pulse engineering algorithm
	Tomography
	Optimizing EET by bath
	References

