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We theoretically investigate the intra-band transitions in Möbius molecules. Due to the weak magnetic response, the relative
permittivity is significantly modified by the presence of the medium while the relative permeability is not. We show that there
is hyperbolic dispersion relation induced by the intra-band transitions because one of the eigen-values of permittivity possesses
a different sign from the other two, while all three eigen-values of permeability are positive. We further demonstrate that the
bandwidth of negative refraction is 0.165 eV for the H-polarized incident light, which is broader than the ones for inter-band
transitions by 3 orders of magnitude. Moreover, the frequency domain has been shifted from ultra-violet to visible domain.
Although there is negative refraction for the E-polarized incident light, the bandwidth is much narrower and depends on the
incident angle.
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1 Introduction

Since it was theoretically proposed in 1968 [1], negative re-
fraction has attracted broad interest because there is wide
application for negative-index metamaterials [2-12], such
as achieving electromagnetic-field cloaking [13, 14], facil-
itating sub-wavelength imaging [2], and assisting crime
scene investigation [15]. Various ways have been pro-
posed to realize negative refraction. One of them is
double-negative metamaterial, in which both the permit-
tivity ε and permeability µ are simultaneously negative at
the same frequencies [1, 2, 16-18]. However, it is diffi-
cult to realize negative permeability since the magnetic re-
sponse is generally weaker than the electric response orders

*Corresponding author (email: aiqing@bnu.edu.cn)

of magnitude. Therein it is the bandwidth of negative µ that
determines the bandwidth of negative refraction. Another
possible way to realize negative refraction is realizing hyper-
bolic dispersion relation [9, 19-22]. When two of the eigen-
values of permittivity tensor are opposite in sign, the mate-
rial can realize negative refraction if all the eigen-values of
permeability tensor are positive [23, 24]. In this case, the
bandwidth of negative refraction is equal to the bandwidth
of negative eigen-value of ε. Since the electric response is
much stronger, the bandwidth of negative refraction of hy-
perbolic metamaterial is much larger than that of double-
negative metamaterial.

In this paper, we investigate the possibility of realizing
hyperbolic dispersion in a novel kind of chiral molecules—
Möbius molecule [25, 26]. Möbius strip owns novel topo-
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logical structures in which an insect can move from one side
to the other side without crossing the border [27, 28]. Pre-
viously, Möbius molecules have been suggested for meta-
materials [6, 29, 30], quantum devices [31-33], dual-mode
resonators and bandpass filters [34], topological insulators
[35], molecular knots and engines [36], and artificial light
harvesting [37, 38]. However, because it is double-negative
metamaterial, the bandwidth of negative refraction in Möbius
molecules is so small, e.g., 4-80 µeV [6, 12], that it might be
difficult to observe. Furthermore, since it is induced by the
inter-band transitions, the negative refraction is centered at
the ultraviolet frequency domain. In this paper, we consider
the hyperbolic dispersion induced by the intra-band transi-
tions. Because the magnetic response is reduced by a factor
of (N/π)2, the magnetic responses in intra-band transitions
decrease by one order of magnitude for N = 12 and thus
the eigen-values of permeability are always positive around
the intra-band transitions. Furthermore, because Möbius
molecules are chiral, the permittivity tensor is anisotropic and
thus two of its eigen-values can possess different signs. Thus,
by using intra-band transitions, we can realize hyperbolic dis-
persion in the visible frequency domain.

2 Permittivity and permeability in Möbius
medium

In this paper, we consider a general double-ring Möbius
molecule which is composed of 2N atoms as shown in
Figure 1(a). Here W and R are the radius of the carbon atom
and the Möbius ring, respectively. 2W denotes the width of
the Möbius ring. The two sub-rings of the Möbius molecule
are linked end to end.

We consider the Möbius ring as the conjugated molecule
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Figure 1 (Color online) (a) A double-ring Möbius molecule with 2N atoms
and N = 12. (b) The energy spectrum of Möbius molecule, the black points
represent the states which are filled with two electrons, the hollow points rep-
resent the states filled no electrons, and the green points represent the states
filled by only one electron. The transitions denoted by arrows can take place
from the initial states, which are occupied by one or two electrons, to the
final states, which are not occupied by two electrons. The transitions with
the same transition frequency are marked with the same color.

and thus we can use Hückel molecular orbital method to de-
scribe the coherent dynamics in the ring. Because all the
atoms of Möbius ring are of the same species, the site en-
ergy difference between the two sub-rings ϵ vanishes. Thus
the Hamiltonian for the single electron of the system can be
written as [33]:

H =
N−1∑
j=0

[
A†j MA j − ξ

(
A†j A j+1 + h.c.

)]
, (1)

where

A j =

 a j

b j

 , (2)

M =

 0 −V

−V 0

 , (3)

a j (b j) is the annihilation operator at the jth site of sub-ring a
(b), V (ξ) is the inter-sub-ring (intra-sub-ring) resonant inte-
gral. Because the two sub-rings are linked end to end, the 0th
atom of a (b) sub-ring is the Nth atom of b (a) sub-ring. Thus,
the boundary conditions of Möbius molecular ring are given
by a0 = bN and b0 = aN . The Hamiltonian can be rewritten
as:

H =
N−1∑
j=0

[
B†jVσzB j − ξ(B†j QB j+1 + h.c.)

]
, (4)

by a local unitary transformation,

B j ≡
 c j↑

c j↓

 = U j A j, (5)

U j =
1
√

2

 e−iφ j/2 −e−iφ j/2

1 1

 , (6)

where c jσ is the annihilation operator of an electron at the
jth nuclear site with σ being the pseudo spin label, φ j = jδ,
δ = 2π/N, and

Q =

 eiδ/2 0

0 1

 . (7)

After this unitary transformation, the Möbius boundary con-
dition can be replaced by the periodical boundary condition,
i.e., BN = B0.

The Hamiltonian of Möbius ring can be diagonalized
by the Fourier transform B j =

∑N−1
j=0 e−ik jCk, with Ck =[

Ck↑,Ck↓
]T

. We can obtain the two energy sub-bands, i.e.,

Ek↑ = V − 2ξ cos (k − δ/2) , (8)

Ek↓ = −V − 2ξ cos k, (9)
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with eigen-states

|k, ↑⟩ = 1
√

2N

N−1∑
j=0

e−i(k−δ/2) j(a†j − b†j ) |0⟩ , (10)

|k, ↓⟩ = 1
√

2N

N−1∑
j=0

e−ik j(a†j + b†j ) |0⟩ , (11)

respectively, where |0⟩ is the state of vacuum, k =

0,±δ,±2δ . . . , ↑ and ↓ denotes the upper and lower band re-
spectively. The energy spectrum of Möbius molecular ring is
shown in Figure 1(b). Note that the upper band is symmetric
with respect to k = δ/2, while the lower band is symmetric
with respect to k = 0. Due to this symmetry, the three pairs
of intra-band transitions denoted by the arrows with the same
color possess the same transition frequencies, respectively.

2.1 Without local field correction

In order to judge whether the material is a negative-refraction
medium, we must calculate the relative permittivity ←→εr and
permeability←→µr for the same incident frequency. According
to ref. [39], the electric displacement field D could be given
as:

D = ε0
←→εr E = ε0E + P, (12)

where ε0 is the permittivity of vacuum, E is the applied elec-
tric field, P is the polarization field. And the magnetic induc-
tion B is

B = µ0 (H +M) = µ0
←→µr H, (13)

where µ0 is the permeability of vacuum, H is the applied mag-
netic field, M is the magnetization field. Under the dipole
approximation [39], according to the linear response theory
[40], we can obtain

P=−
∑
i, f

nidi f d f i · E (t)(
n f + 1

)
~v0

Re
(

1
ω − △ f i + iγ

)
, (14)

M=−
∑
i, f

niµ0mi f m f i ·H (t)(
n f + 1

)
~v0

Re
(

1
ω − △ f i + iγ

)
, (15)

where ni and n f are the number of electrons occupying in
the initial and final states respectively, △ f i is the transition
frequency between the final state | f ⟩ and the initial state |i⟩,
di f = ⟨i|d | f ⟩ and mi f = ⟨i|m | f ⟩ are the matrix elements of
electric dipole d and magnetic dipole m between the initial
and final states, v0 ≃ 2π(R + W)2W is the volume occupied
by a Möbius molecule, ω is the frequency of incident light,
γ−1 is the lifetime of the excited states. Inserting eqs. (14)
and (15) into eqs. (12) and (13), respectively, the relative per-
mittivity and permeability could be obtained as:

←→εr = 1 −
∑
i, f

nidi f d f i(
n f + 1

)
~ε0v0

Re
(

1
ω − △ f i + iγ

)
, (16)

←→µr = 1 −
∑
i, f

niµ0mi f m f i(
n f + 1

)
~v0

Re
(

1
ω − △ f i + iγ

)
. (17)

Because the size of the molecule is much smaller than the
wavelength of the incident light, it is valid to write the in-
teraction Hamiltonian between the molecule and the incident
light under dipole approximation [39], i.e.,

HE = −d · E cosωt. (18)

We assume that⟨
ϕ js

∣∣∣ r ∣∣∣ϕ j′ s′
⟩
= δ j j′δss′R js, (19)

where
∣∣∣ϕ j+

⟩
= a†j |0⟩,

∣∣∣ϕ j−
⟩
= b†j |0⟩, R j+

(
R j−

)
is the position

of the jth nuclear in a (b) sub-ring which can be given by

R j± =
(
R ±W sin

φ j

2

)
cosφ jêx

+

(
R ±W sin

φ j

2

)
sinφ jêy ±W cos

φ j

2
êz, (20)

where φ j = jδ is the azimuthal angle of the jth nucleus. By
using eqs. (18)-(20), we can obtain the matrix elements of HE

between the eigen-states of H which are written as eqs. (10)
and (11). Here, we only give the matrix elements of intra-
band transitions as follows:

⟨k, ↑|HE |k ± δ, ↑⟩ =
eR
2

(
E(x) ∓ iE(y)

)
cosωt, (21)

⟨k, ↓|HE |k ± δ, ↓⟩ =
eR
2

(
E(x) ∓ iE(y)

)
cosωt, (22)

⟨k, σ|HE |k ± 2δ, σ⟩ = 0, (23)

where σ =↓, ↑. We can summarize the intra-band transition
selection rules for the electric-dipole operator from these ma-
trix elements of HE as:

|k, σ⟩
x,y

 |k ± δ, σ⟩ . (24)

Similarly, we can obtain the matrix elements of the inter-
action Hamiltonian under dipole approximation [39]:

HB = −m · B cosωt (25)

between the eigen-states of H. We also only give the matrix
elements of intra-band transitions

⟨k, ↑|HB |k + δ, ↑⟩ =
eW2ξ

8~
[cos(k − δ) − cos(k + δ)]

×
(
iB(x) + B(y) − B(z)

)
cosωt, (26)

⟨k, ↑|HB |k − δ, ↑⟩ =
eW2ξ

8~
[cos(k − 2δ) − cos k]

×
(
iB(x) − B(y) + B(z)

)
cosωt, (27)
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⟨k, ↑|HB |k + 2δ, ↑⟩ =eW2ξ

8~
[cos k − cos(k + δ)]

×
(
iB(x) + B(y)

)
cosωt, (28)

⟨k, ↓|HB |k + δ, ↓⟩=
eW2ξ

8~

[
cos

(
k − δ

2

)
−cos

(
k +

3δ
2

)]
×

(
iB(x) + B(y) − B(z)

)
cosωt, (29)

⟨k, ↓|HB |k − δ, ↓⟩ =
eW2ξ

8~

[
cos

(
k − 3δ

2

)
−cos

(
k +
δ

2

)]
times

(
−iB(x)+B(y) − B(z)

)
cosωt, (30)

⟨k, ↓|HB |k + 2δ, ↓⟩=eW2ξ

8~

[
cos

(
k +
δ

2

)
−cos

(
k +

3δ
2

)]
×

(
iB(x) + B(y)

)
cosωt. (31)

Furthermore, the selection rules for the magnetic-dipole op-
erator are

|k, σ⟩
x,y,z

 |k ± δ, σ⟩ , |k, σ⟩

x,y

 |k + 2δ, σ⟩ . (32)

Notice that as the matrix elements of HB for intra-band tran-
sitions are proportional to W2 and those for inter-band tran-
sitions are O(RW), the magnetic responses for intra-band
transitions have been reduced by a factor of (R/W)2 =

(N/π)2. Hereafter, we will show by numerical simulation that
the eigen-values of permeability tensor are always positive
around the intra-band transitions.

According to eqs. (24) and (32), only the transitions
|k, σ⟩ 
 |k ± δ, σ⟩ are allowed by both electric and mag-
netic dipole couplings. Moreover, a transition can take place
when the initial state is non-empty (NE) and the final state is
not fully filled with electrons (NFF). And we only consider
intra-band transitions. Considering all the conditions above,
only six transitions, depicted by the arrows in Figure 1(b),
are considered in this paper. We divide these transitions into
three pairs by the same transition frequencies respectively:
(1) |δ, ↑⟩ 
 |2δ, ↑⟩, |−δ, ↑⟩ 
 |−2δ, ↑⟩, denoted by the green
arrows; (2) |3δ, ↓⟩ 
 |4δ, ↓⟩, |−3δ, ↓⟩ 
 |−4δ, ↓⟩, denoted by
the red arrows; (3) |4δ, ↓⟩ 
 |5δ, ↓⟩, |−4δ, ↓⟩ 
 |−5δ, ↓⟩, de-
noted by the black arrows. We can calculate the elements of
the dielectric tensor by eq. (16), with the nonvanishing matrix
elements being

εxx
r =ε

yy
r = 1 −

∑
(kσ)∈NE

∑
(k′σ)∈NFF

ηkk′σ, (33)

ε
yx
r =−εxy

r (34)

=η′2δ,3δ,↑ − η′−δ,−2δ,↑ +
∑

k=3δ,4δ

(
η′k,k+δ,↓ − η′−k,−k−δ,↓

)
,

where

ηkk′σ =
nie2R2

4
(
n f + 1

)
~ε0v0

1
ω − △kk′σ + iγ

(35)

and ∆kk′σ is the transition frequency between the final state
|k′σ⟩ and the initial state |kσ⟩ within the same band σ, η′kk′σ
is the real part of ηkk′σ.

Eq. (35) indicates that if two transitions share the same
transition frequency ∆kk′σ, they would also possess the same
ηkk′σ. Since there are three pairs of transitions which possess
the same transition frequency, we can obtain three equations:

η2δ,3δ,↑ = η−δ,−2δ,↑,

η3δ,4δ,↓ = η−3δ,−4δ,↓, (36)

η4δ,5δ,↓ = η−4δ,−5δ,↓.

Inserting these three equations into eq. (34), we find that the
off-diagonal elements εxy

r = ε
yx
r = 0. As a result, ←→εr can be

simplified as:

←→εr =


1 − η′ 0 0

0 1 − η′ 0

0 0 1

 , (37)

where η′ =
∑

(kσ)∈NE
∑

(k′σ)∈NFF η
′
kk′σ. The three eigen-values

of←→εr are εxx
r = ε

yy
r = 1 − η′ and εzz

r = 1. Obviously, one of
the eigen-values of←→εr is identical to 1. Figure 2 numerically
demonstrates the relation between εxx

r

(
ε

yy
r

)
and the detuning

∆ω = ω − ∆kk′σ. The illustration presents the situation when
the detuning is less than 100 µeV, while the inset shows the
relation in the large-detuning regime. We can obtain that the
bandwidth of negative permittivity is about 1.65×105 µeV,
which is broader than the previous discovery in ref. [12] by 3
orders of magnitude.

From eq. (35), the real part of ηkk′σ could be re-expressed

0

−1

−4

0 50 100

104

×10−4

105

∆ω (µeV)

∆ω (µeV)

ε
r
 (
a
.u
.)

ε
r
 (
a
.u
.)

Figure 2 (Color online) The relationship between εr and the detuning △ω
around the transition frequency 2.6353829 eV without local field correction.
Here we adopt the following parameters: V = ξ =3.6 eV [41], W =0.077 nm
[42], R = NW/π, γ−1 =4 ns [43].
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as:

η′kk′σ =
nie2R2

4
(
n f + 1

)
ε0v0

(
∆ωkk′σ +

γ2

∆ωkk′σ

)−1

, (38)

where ∆ωkk′σ = ω − ∆kk′σ. On account of the initial and final
conditions, it can be explicitly written as:

η′ =
e2R2

2ε0v0

(∆ω4δ,5δ,↓ +
γ2

∆ω4δ,5δ,↓

)−1

+ 2
(
∆ω2δ,3δ,↑ +

γ2

∆ω2δ,3δ,↑

)−1

+

(
∆ω3δ,4δ,↓ +

γ2

∆ω3δ,4δ,↓

)−1 . (39)

To find the bandwidth of negative εr, we should find the two
solutions to the equation:

1 − η′ (ω) = 0. (40)

For the solution between ω2δ,3δ,↑ = 3.2276717 eV
and ω4δ,5δ,↓ = 2.6353829 eV, which yields ∆ω3δ,4δ,↓ ≫
∆ω2δ,3δ,↑,∆ω4δ,5δ,↓, eq. (39) could be simplified as:

η′ ≃ e2R2

2ε0v0

(∆ω4δ,5δ,↓ +
γ2

∆ω4δ,5δ,↓

)−1

+2
(
∆ω2δ,3δ,↑ +

γ2

∆ω2δ,3δ,↑

)−1 . (41)

For the present parameters, we find γ ∼ 10−6 eV and C =
e2R2

2ε0v0
∼ 11.4 eV. When ∆ω2δ,3δ,↑ and ∆ω4δ,5δ,↓ ≫ γ is satis-

fied, the terms of γ2 could be ignored, and thus

η′ ≃ C
(

1
∆ω4δ,5δ,↓

+
2

∆ω2δ,3δ,↑

)
. (42)

Inserting the above equation into eq. (40), we obtain the so-
lution ω1 = 2.8305463 eV while the other solution ω =
37.23251 eV should be discarded because it is far away from
the transition. To find the solution around the resonance fre-
quency ω = 2.6353829 eV, we simplify η′ as:

η′ = C
(
∆ω4δ,5δ,↓ +

γ2

∆ω4δ,5δ,↓

)−1

. (43)

Inserting eq. (43) into eq. (40) yields ∆ω4δ,5δ,↓ ≃ 0 as C2 ≫
γ2. The other solution ∆ω4δ,5δ,↓ ≃ C should be discarded be-
cause it is not close to the transition. Thus, the other solution
to eq. (40) is ω2 = 2.6353829 eV. We obtain the window of
negative permittivity is ∆ω = ω1 − ω2 = 0.1952 eV, which is
consistent with the numerical simulation in Figure 2.

In the same way, we can calculate the elements of the per-
meability tensor←→µr by using eq. (17) as:

←→µr =


1 − β −iβ1 iβ1

iβ1 1 − β β

−iβ1 β 1 − β

 , (44)

where β =
∑

(kσ)∈NE
∑

(k′σ)∈NFF α
2
kk′ση

′
kk′σ, and

β1 = α
2
2δ,3δ,↑η

′
2δ,3δ,↑ − α2

−δ,−2δ,↑η
′
−δ,−2δ,↑ (45)

+
∑

k=3δ,4δ

(
α2

k,k+δ′,↓η
′
k,k+δ,↓ − α2

−k,−k−δ′,ση
′
−k,−k−δ,↓

)
,

αk,k+δ,↑ =
W2ξ

4~cR
[cos(k − δ) − cos(k + δ)] , (46)

αk,k−δ,↑ =
W2ξ

4~cR
[cos(k − 2δ) − cos(k)] , (47)

αk,k+δ,↓ =
W2ξ

4~cR

[
cos

(
k − δ

2

)
− cos

(
k +

3δ
2

)]
, (48)

αk,k−δ,↓ =
W2ξ

4~cR

[
cos

(
k − 3δ

2

)
− cos

(
k +
δ

2

)]
. (49)

According to eq. (47), we can obtain the following three
relations:

α2
2δ,3δ,↑ = α

2
−δ,−2δ,↑, (50)

α2
3δ,4δ,↓ = α

2
−3δ,−4δ,↓, (51)

α2
4δ,5δ,↓ = α

2
−4δ,−5δ,↓. (52)

Inserting eqs. (51) and (36) into eq. (45), we can obtain
β1 = 0. Therefore,←→µr could be simplified as:

←→µr =


1 − β 0 0

0 1 − β β

0 β 1 − β

 . (53)

The permeability tensor is not diagonal in the molecular coor-
dinate system as shown above. As a result,←→εr and←→µr cannot
be simultaneously diagonalized by the same rotation trans-
formation.

The permeability possess three eigen-values, i.e., µ1 =

1 − 2β, µ2 = 1 − β and µ3 = 1. Because αkk′σ ∼ 10−3,
µ j’s ( j = 1, 2, 3) are generally less significantly influenced by
the medium than ε j j

r ’s ( j = x, y, z). This prediction is numeri-
cally confirmed in Figure 3. As shown, all eigen-values of µr

are positive.

2.2 Local field correction
In the above sections, we obtain the relative permittivity and
permeability by the linear response theory. However, because
all molecules in the medium are polarized by the applied
fields, the total field experienced by a molecule is the sum
of the external field E and internal field Ei [39], i.e.,

Etot = E + Ei. (54)

And internal field could be written as Ei = Enear − Emean,
where Enear is the electric field produced by nearby molecules
and Emean is the mean field, which is evaluated as:
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Figure 3 (Color online) The relationship between µ1 and the detuning △ω
around the transition frequency 2.6353829 eV without local field correction.
Here we adopt the following parameters: V = ξ =3.6 eV [41], W =0.077 nm
[42], R = NW/π, γ−1 =4 ns [43].

Emean = −
1

3ε0

∑
l

pl

V
, (55)

where pl is the induced dipole moment of the lth molecule in-
side the volume V . For a sufficiently-weak field, the induced
dipole moment is given by

pl = ε0γmolEtot, (56)

where γmol is the molecular polarizability. According to lin-
ear response theory [40], the electric dipole is written as:

⟨d⟩ = −
∑
i, f

di f d f i · Etot

~
Re

(
1

ω − △ f i + iγ

)
. (57)

Because pl = ⟨d⟩, due to eqs. (57) and (56), we can obtain

γmol = −
∑
i, f

di f d f i

~ε0
Re

(
1

ω − △ f i + iγ

)
. (58)

The polarization P =
∑

l pl/V could be written as:

P =
pl

υ0
, (59)

if we assume identical contributions from all molecules. And
the relationship between P and the electric field is

P = ε0
←→χe E. (60)

By combining eqs. (56), (59) and (60), we have

←→χe =

(
1 − γmol

3υ0

)−1
γmol

υ0
. (61)

Inserting eq. (12) into eq. (60), we obtain

←→εr = 1 +←→χe . (62)

Inserting eq. (61) into eq. (62), ←→εr could be expressed in
terms of γmol as:

←→εr = 1 +
(
1 − γmol

3υ0

)−1
γmol

υ0
. (63)

Inserting eq. (58) into the above equation, we can obtain←→εr

tensor with the nonvanishing matrix elements

εxx
r = ε

yy
r =

3 − 2η′

3 + η′
, (64)

εzz
r = 1. (65)

It follows from eq. (64) that the bandwidth of negative per-
mittivity, when we consider the local field effect, is deter-
mined by the solutions to

η′ =
3
2
. (66)

Comparing eq. (66) to eq. (40), we find that the bandwidth
of negative permittivity is modified by local field effect only
with a factor 3/2. Base on eq. (66), we present the relation
between the relative permittivity modified by local field ef-
fect and the detuning in Figure 4. Comparing Figure 2 to
Figure 4, we find that local field effect only slightly changes
the bandwidth of negative permittivity. In the same way, we
can find that local field effect only slightly changes the per-
meability, and the three eigen-values of permeability tensor
are all positive.

3 Negative refraction with linearly-polarized
incident light

In the previous section, we have calculated the relative per-
mittivity and permeability of the Möbius medium. The rela-

0
0

−1

−2

7.25 7.29 ×10−3

×1050.5 1.0 1.5

∆ω (µeV)

∆ω (µeV)

ε
r

Figure 4 (Color online) εxx
r (εyy

r ) modified by local field effect around the
transition frequency 2.6353829 eV.
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tive permittivity and permeability are second-order tensors,
which are not diagonal in the same coordinate system. In
this section, by both analytic and numerical simulations, we
clearly show that there is hyperbolic dispersion relation in the
Möbius medium, and the conditions under which the negative
refraction can take place are discussed.

3.1 H-polarized incident configuration

As illustrated in Figure 5(a), a linearly-polarized monochro-
matic light is incident from the air into Möbius medium. The
electric and magnetic fields of incident wave are respectively

Ei =
(
Eiyêy + Eizêz

)
ei(ki·r−ωt), (67)

Hi = Hixêxei(ki·r−ωt), (68)

where ki = kiyêy + kizêz is the wave vector. We call this inci-
dent configuration as H-polarized light because the magnetic
field of the incident light is perpendicular to the wave vector.

According to the boundary conditions,

êy × (Hi +Hr −Ht) = 0, (69)

ktx = kix = 0, (70)

ktz = kiz > 0, (71)

and eq. (68), the magnetic and electric fields of the refracted
light can be written as:

Ht = Htxêxei(kt ·r−ωt), (72)

Et =
(
Etyêy + Etzêz

)
ei(kt ·r−ωt), (73)

where the wave vector of refracted wave is kt = ktyêy + ktzêz.
According to eqs. (72) and (73), the Maxwell’s equations of
refracted light could be written as:

∇ × Et = iωµ0
←→µr Ht, (74)

∇ ×Ht = −iωε0
←→εr Et. (75)

(a) (b)y y

S
i S

iS
r k

r

k
r

k
t k

t

H
t

S
t

S
t

k
i k

i

H
i H

r
E
r

E
i

E
t

S
r

z z

Figure 5 (Color online) Negative refraction for hyperbolic dispersion with
εxx

r < 0, εyy
r < 0, and εzz

r > 0. (a) H-polarized incident field; (b) E-polarized
incident field. The Poynting vector, wave vector and magnetic field of the
incident wave are Si, ki and Hi, respectively. It is reflected with Poynt-
ing vector Sr , wave vector kr and magnetic field Hr . It is transmitted with
Poynting vector St , wave vector kt and magnetic field Ht .

Inserting eq. (75) into eq. (74), we can obtain

∇ ×
[(←→εr

)−1 ∇ ×Ht

]
=
ω2

c2
←→µr Ht. (76)

For nontrivial solutions to the equation, the determinant of
its coefficient matrix should be equal to zero, which yields a
hyperbolic dispersion relation

ε
yy
r k2

ty + ε
zz
r k2

tz =
ω2

c2 ε
yy
r ε

zz
r µ

xx
r , (77)

where the solutions are

kty = ±
√
ω2εzz

r µ
xx
r /c2 − εzz

r k2
tz/ε

yy
r . (78)

Because εzz
r = 1 and εyy

r < 0, the real solution to eq. (78)
always exists. Below, we will show that we should choose
the negative solution for a correct Poynting vector of the re-
fracted light. According to eq. (75), we can obtain

Et = −
1
ωε0

(←→εr

)−1
(kt ×Ht) . (79)

Inserting the above equation into St =
1
2
(
Et ×H∗t

)
, the Poynt-

ing vector of refracted light could be written as St = S tyêy +

S tzêz with

S ty =
ktyH2

tx

2ωε0ε
zz
r
, (80)

S tz =
ktzH2

tx

2ωε0ε
yy
r
. (81)

As shown in Figure 5(a), the condition under which the re-
fracted light can propagate in the medium is S ty < 0. Be-
cause εzz

r = 1 > 0, according to eq. (80), we should take the
negative solution in eq. (78) to meet the criterion S ty < 0. Ac-
cording to the boundary conditions in eq. (70), we can obtain
from eq. (81) that S tz < 0 as εyy

r < 0. Because the Poynting
vectors of incident and refracted lights are on the same side
of the normal, negative refraction is realized. The bandwidth
of negative refraction is given by the bandwidth of negative
ε

yy
r , i.e., 0.165 eV.

3.2 E-polarized incident configuration

Analogously, we consider an E-polarized incident configura-
tion, i.e.,

Ei = Eixêxei(ki·r−ωt), (82)

Hi =
(
Hiyêy + Hizêz

)
ei(ki·r−ωt), (83)

where ki = kiyêy + kizêz, Ei and Hi are the electric and mag-
netic fields of incident wave, respectively. In a similar way of
obtaining eq. (76), we can obtain the equation

∇ ×
[(←→µr

)−1 ∇ × Et

]
=
ω2

c2
←→εr Et. (84)
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The requirement for nontrivial solution yields the hyperbolic
dispersion relation as:

ε
yy
r k2

ty + ε
zz
r k2

tz =
ω2

c2 ε
yy
r ε

zz
r µ

xx
r , (85)

which is the same as eq. (77) with the same solution given by
eq. (78). We can obtain the Poynting vector of refracted light
St = S tyêy + S tzêz, with

S ty =
E2

tx

2ωµ0µ1

(
µ

yz
r ktz + µ

xx
r kty

)
, (86)

S tz =
E2

tx

2ωµ0µ1

(
µxx

r ktz + µ
yz
r kty

)
. (87)

Figure 3 illustrates that µ1 > 0. As shown in Figure 5(b), S ty

must be negative, otherwise there would be no refracted light.
By numerical calculation, we find that we should choose the
negative sign of kty in eq. (78) to ensure S ty < 0. Figure 5(b)
shows that the conditions of negative refraction are S ty < 0
and S tz < 0. Because the coefficient E2

tx/ (2ωµ0µ1) > 0,
the conditions could be written as µyz

r ktz + µ
xx
r kty < 0 and

µxx
r ktz + µ

yz
r kty < 0. Inserting the boundary conditions

ktx = kix = 0, ktz = kiz = ki sin θ, (88)

where θ is the angle of incidence, and eq. (53) into eqs. (86)
and (87), we plot Figure 6(a), which shows S ty < 0 and S tz

can change sign along with θ and ∆ω. We further plot S tz

vs θ and ∆ω in Figure 6(b). As shown, when the incident
angle θ is enlarged, the bandwidth of negative refraction is
narrowed. Generally, the bandwidth for H-polarized incident
configuration is much wider than that for E-polarized inci-
dent configuration.

4 Conclusion

In this work, we propose a new approach to realize negative
refraction in chiral molecules by using hyperbolic dispersion.
When we consider intra-band transitions, all of the three
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Figure 6 (Color online) (a) The dependence of S ty (the lower surface) and
S tz (the upper surface) on ∆ω and θ. (b) The bandwidth of negative S tz vs.
θ. The black line is the contour line for S tz = 0, which separates the regime
S tz < 0 at the bottom-left and the regime S tz > 0 at the top-right.

eigen-values of ←→µr are positive for the whole frequency do-
main, and one of the three eigen-values of ←→εr possesses a
different sign from the other two in some frequency domains.
The window of negative refraction is determined by the win-
dow of negative ←→εr . Since the electric response is generally
larger than the magnetic response orders of magnitude, the
hyperbolic metamaterial can significantly broaden the win-
dow of negative refraction. In Möbius medium, since the
transition frequencies of intra-band transition are smaller than
those of the inter-band transitions, we can observe a band-
width with 0.165 eV around ω =2.6354 eV (471.4 nm),
which is in the range of visible light. Compared to the pre-
vious proposals in refs. [6, 12], the bandwidth of negative
refraction has been significantly broadened by 3 orders of
magnitude and the center frequency has been shifted from
the ultraviolet to the visible frequency domain. Compared to
that of the traditional split-ring resonator, 10 THz [44], the
bandwidth of the negative refraction also has been slightly
broadened.
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