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Abstract: Solid quantum repeater is a core part in a large-scale quantum network. Entanglement
purification, the key technique in a quantum repeater, is used to distill high-quality nonlocal
entanglement from an ensemble in a mixed entangled state and to depress the vicious influence
on quantum information carriers caused by noise. Here, we present an imperfect-interaction-
free entanglement purification on nonlocal electron spins in quantum dots for solid quantum
repeaters, using faithful parity check on electron spins. The faithful parity check can make
correct judgement on the parity mode without destructing the nonlocal solid entanglement even
with the imperfect interaction between a QD embedded inside a microcavity and a circularly
polarized photon in the nearly realistic condition. Therefore, the imperfect-interaction-free
entanglement purification can prevent the maximally entangled states from being changed into
partially entangled ones and guarantee the fidelity of the nonlocal mixed state to a desired one
after purification. As this scheme is feasible in the nearly realistic condition with imperfect
interaction, the requirements for experimental implementation will be relaxed. These distinctive
features make this imperfect-interaction-free entanglement purification have more practical
applications in solid quantum repeaters for a large-scale quantum network.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantum entanglement is a key resource in quantum computation and quantum communication,
as it provides the tremendous power for speeding up the computation [1–3] and improves security
of communication [4–13]. Nonlocal maximal entanglement provides a useful way for establishing
quantum communication channels in quantum communication protocols including quantum
teleportation [4], quantum dense coding [5,6], quantum key distribution [7,8], quantum secret
sharing [9], quantum secure direction communication [10–13], and so on. In the quantum
network established by the quantum entanglement, a basic problem for communication between
remote nodes is to hold nearly perfect entanglement. Unfortunately, the quality of entanglement
between two nodes decreases exponentially with the length of the communication channel due
to the decoherence and photon losses in the entanglement storage and distribution processes,
which may limit the communication distance to hundreds of kilometres [14]. This bottleneck
can be overcome by using the quantum repeater originally proposed by Briegel et al. in 1998
[15]. The principle of quantum repeater can be described as follows: In order to generate
entanglement between two remote nodes, say quantum memories A and Z, entanglement is first
created independently within short elementary links, i.e. between the quantum memories A and
B, C and D,. . . , W and X, Y and Z. After entanglement swapping, entanglement is then generated
between quantum memories A and D,. . . , W and Z. Through cascading entanglement swapping,
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entanglement is generated between the terminal quantum memories A and Z. In the seminal
DLCZ protocol, Duan et al. proposed the "from-the-memory" quantum repeater using atomic
ensembles as quantum memories [16]. In a quantum repeater, nested entanglement purification
[17,18] is an ingredient component to distill high-fidelity entangled states from low-fidelity
entangled ones within short elementary links [15,16]. There are two ways for entanglement
purification in the "from-the-memory" quantum repeater. One way is to convert the entangled
states stored in the quantum memories into entangled photons first [19] and subsequently purify
entangled photons [20]. The other way is to directly purify entangled quantum memories.

Quantum stationary systems are usually acted as quantum memories in the network of quantum
communication and quantum computation. Diamond nitrogen vacancy centers, atomic ensembles,
single trapped ions, and quantum dots (QDs) are frequently-used quantum stationary systems in
quantum repeaters [21–33], and many interesting entanglement purification protocols (EPPs)
on these quantum stationary systems have been proposed [34–45]. A charged QD is one of the
most promising quantum stationary systems playing the role of quantum memory in the quantum
network, due to the long coherence time of an electron spin in a QD. The coherence time of an
electron spin in a charged QD can maintain 3µs [46,47], and the relaxation time of an electron
spin can reach the order of ms [48,49] through the technique of spin echo. Meanwhile, fast
preparation of the superposition state of the electron spin [50,51] has been demonstrated, and fast
manipulation [52–55] and detection [56] of the electron spin state in a QD have been reported in
recent years. Furthermore, in view of realizing a QD embedded in a microcavity (QD-microcavity
system) [57,58], the interaction between a QD-microcavity system and a circularly polarized
photon has attracted much attention for its applications in quantum information processing
[59,60], especially in quantum repeater using QD systems and entanglement purification on
electron spins in QDs [31,40].

Since the first EPP proposed by Bennett et al. [17], a number of approaches, such as controlled-
NOT (CNOT) gate, Toffoli gate, parity check, and hyperentanglement, have been considered to
assist completing entanglement purification [20,61–70]. Parity check is an important method
which has been used to reserve the two pairs of entangled systems in the same parity mode
and discard the ones in the different parity modes. In this method, it is especially important
to correctly judge the parity mode with nondestruction on the entangled state. However, using
the interaction between a QD-microcavity system and a circularly polarized photon, the parity
check is faithful only in specifically ideal conditions, which is difficult to be accomplished. In the
realistic experiment, the interaction between a QD-microcavity system and a circularly polarized
photon turns imperfect due to the realistic experiment parameters deviate from the specifically
ideal ones, and it will lead to an unfaithful parity check, including wrong judgement on the parity
mode and destruction on the entangled system. If an unfaithful parity check makes a wrong
judgement on the parity mode, the fidelity of the mixed states cannot reach a desired one after
purification. Moreover, if an unfaithful parity check has a destruction on the entangled system,
the maximally entangled states in the mixed states would be changed into partially entangled
states (the detailed information can be found in Sec. 4).

In this paper, we propose an imperfect-interaction-free EPP for QD systems by constructing a
faithful parity check in the nearly realistic condition. The faithful parity check has nondestruction
on the entangled state and makes correct judgement on the parity mode of an entangled state in
the nearly realistic condition. With the faithful parity check, the imperfect-interaction-free EPP
can guarantee the desired fidelity of the mixed states and keep the maximally entangled states
from being changed into partially entangled ones. Meanwhile, this imperfect-interaction-free
EPP relaxes the requirement of experiment techniques as it can be implemented with nonidentical
QD-microcavity systems in a nearly realistic condition. Furthermore, this imperfect-interaction-
free EPP can be repeated until success, as the faithful parity check is a heralded one, whose
failure can be alarmed by the single-photon detector. These distinctive features make this
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imperfect-interaction-free EPP for a quantum stationary system more useful in a quantum
repeater.

2. Faithful parity check for imperfect-interaction-free EPP

Let us consider the interaction between a QD-microcavity system and a circularly polarized
photon first [71]. A singly charged QD (e.g. a self-assembled In(Ga)As QD or a GaAs interfacial
QD) inside a double-sided microcavity is shown in Fig. 1(a). Both the bottom and the top
distributed Bragg reflectors of the double-sided microcavity are partially reflective with the same
reflection coefficients. Meanwhile the microcavity supports both two circularly polarized modes
[72–75]. The circularly polarized photon |R↑〉 or |L↓〉 with Sz = +1 is coupled to the dipole
transition from the state | ↑〉 to the exciton (X−) state | ↑↓⇑〉; The circularly polarized photon |R↓〉
or |L↑〉 with Sz = −1 is coupled to the dipole transition from the state | ↓〉 to the exciton (X−)
state | ↓↑⇓〉, as shown in Fig. 1(b). Here, | ↑〉 and | ↓〉 denote the states of the excess electron spin
in a QD with Jz = ±

1
2 , respectively. | ↑↓⇑〉 and | ↓↑⇓〉 denote the states of the exciton consisting

of two electrons bound to one heavy hole with Jz = ±
3
2 , respectively.

Fig. 1. (a) Schematic diagram for an electron-spin of a QD inside a double-sided optical
microcavity. (b) Schematic description of the relevant exciton energy levels and the
spin selection rules for dipole transitions of negatively charged excitons. |R↑〉(|R↓〉) and
|L↑〉(|L↓〉) represent the right-circularly polarized photon and the left-circularly polarized
photon propagating along (against) the normal direction of the cavity Z axis (quantization
axis), respectively.

The dynamic process of the interaction between a QD-microcavity system and a circularly
polarized photon can be represented by Heisenberg equations of motion for the cavity field
operator â and the exciton X− dipole operator σ̂− in the interaction picture [76],

dâ
dt
= −

[
i(ωc − ω) + κ +

κs

2

]
â − gσ̂− −

√
κâin′ −

√
κâin + Ĥ,

dσ̂−
dt
= −

[
i(ωX− − ω) +

γ

2

]
σ̂− − gσ̂zâ + Ĝ,

(1)

where ωc, ωX− , and ω are the frequencies of the cavity, the X− transition, and the photon,
respectively. g is the coupling strength between the X− and the microcavity. κ and κs are the
microcavity-field decay rate and side-leaky rate of microcavity respectively, and γ is the decay
rate of exciton dipole. Ĥ and Ĝ are the noise operators related to reservoirs. âin, âin′ , âr, and
ât are the input and output field operators, which satisfy the boundary relation âr = âin +

√
κâ

and ât = âin′ +
√
κâ [76]. From Eq. (1) and the boundary relation, in the weak excitation

approximation, the reflection coefficient r and the transmission coefficient t can be obtained as:
[71,77–79]

r = 1 + t, t = −
κ[i(ωX− − ω) +

γ
2 ]

[i(ωX− − ω) +
γ
2 ][i(ωc − ω) + κ +

κs
2 ] + g2

. (2)
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When the QD is decoupled to the microcavity with the coupling strength g = 0, the reflection
coefficient r0 and the transmission coefficient t0 can be written as:

r0 =
i(ωc − ω) +

κs
2

i(ωc − ω) + κ +
κs
2
, t0 = −

κ

i(ωc − ω) + κ +
κs
2
. (3)

If the parameters of the QD-microcavity system and the circularly polarized photon are confined
in the specifically ideal condition (i.e. the strong coupling g>(κ, γ) and the frequency |ω−ω0 |<κ
are satisfied, where ω0 = ωc = ωX−), the reflection and transmission coefficients r0 → 0,
t0 → −1 for the uncoupled cavity and r → 1, t → 0 for the coupled cavity can be obtained,
and the interaction between a QD-microcavity system and a circularly polarized photon can be
approximately expressed as [71]:

|R↑ ↑〉 → |L↓ ↑〉, |L↓ ↑〉 → |R↑ ↑〉, |R↓ ↑〉 → −|R↓ ↑〉, |L↑ ↑〉 → −|L↑ ↑〉,

|R↓ ↓〉 → |L↑ ↓〉, |L↑ ↓〉 → |R↓ ↓〉, |R↑ ↓〉 → −|R↑ ↓〉, |L↓ ↓〉 → −|L↓ ↓〉.
(4)

However, when the parameters are not confined in the specifically ideal condition, the interaction
between a QD-microcavity system and a circularly polarized photon turns imperfect compared
with the ideal one as shown in Eq. (4), and it can be expressed as [71]:

|R↑ ↑〉 → r |L↓ ↑〉 + t|R↑ ↑〉, |L↓ ↑〉 → r |R↑ ↑〉 + t|L↓ ↑〉,

|R↓ ↑〉 → t0 |R↓ ↑〉 + r0 |L↑ ↑〉, |L↑ ↑〉 → t0 |L↑ ↑〉 + r0 |R↓ ↑〉,

|R↓ ↓〉 → r |L↑ ↓〉 + t|R↓ ↓〉, |L↑ ↓〉 → r |R↓ ↓〉 + t|L↑ ↓〉,

|R↑ ↓〉 → t0 |R↑ ↓〉 + r0 |L↓ ↓〉, |L↓ ↓〉 → t0 |L↓ ↓〉 + r0 |R↑ ↓〉.

(5)

The faithful parity check which can make correct judgement on the parity mode without
destruction on the entangled states is constructed with a circuit unit based on the imperfect
interaction betwen a QD-microcavity system and a circularly polarized photon as shown in
Eq. (5). The circuit unit consists of a 50:50 beam splitter, some half-wave plates, two mirrors, a
single-photon detector, and a QD-microcavity system, as shown in Fig. 2(a).

Suppose an electron spin in a QD embedded in a double-sided microcavity is initialized in the
state |ϕ〉s = α | ↑〉 + β | ↓〉 with |α |2 + |β |2 = 1. A photon in the right-circularly polarized state
|R〉 is injected into the circuit unit from the input path i. After the photon passes through the
circuit unit, the state of the system consisting of the photon and the electron spin in the QD is
changed from the state |Φ〉0 = |R〉(α | ↑〉 + β| ↓〉) to the state

|Φ〉1 = D|R〉i1 (α | ↑〉 + β | ↓〉) + T |L〉i2 (α | ↑〉 − β | ↓〉). (6)

Here, D = 1
2 (t + r + t0 + r0) and T = 1

2 (t + r − t0 − r0) are the reflection coefficient and the
transmission coefficient of the circuit unit, respectively. If the photon is reflected from the circuit
unit with the probability of |D|2, there would be no change of the polarization of the photon
and the state of the electron spin in the QD, and the reflected photon will be detected by the
single-photon detector. If the photon is transmitted from the circuit unit with the probability
of |T |2, the polarization of the photon is flipped and the state of the electron spin in the QD
is changed from |ϕ〉s to |ϕ〉′s = α | ↑〉 − β | ↓〉. The transmitted photon will be emitted out of
the circuit unit from the output path i2 to the following optical path rather than detected by the
single-photon detector. For nonidentical QD-microcavity systems, the reflection (transmission)
coefficient D (T) may be different, which is determined by the parameters of the QD-microcavity
systems.
To faithfully check the parity mode of the entangled state of two electron spins in two QDs,

such as QDA and QDC, one injects a right-circularly polarized photon from the left-input port in
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Fig. 2. (a) Schematic diagram for the circuit unit. BS is a 50:50 beam splitter, which performs
a spatial-mode Hadamard operation [|i〉 → 1√

2
(|j1〉 + |j2〉), |i1〉 → 1√

2
(|j1′〉 + |j2′〉), |i2〉 →

1√
2
(|j1′〉− |j2′〉)] on a photon. Hpi(i′)(i=1,2) is a half-wave plate, which performs a polarization

Hadamard operation [|R〉 → 1√
2
(|R〉 + |L〉),|L〉 → 1√

2
(|R〉 − |L〉)] on a photon. Mi(i=1,2) is a

mirror, and PD is a single-photon detector. (b) Schematic diagram for quantum circuit of the
faithful parity check on the electron spins in QDs, say QDA and QDC as an example. UBS is
an unbalanced beam splitter with the transmission coefficient cos θ = 1/

√
1 + (T1T2)2 and

the reflection coefficient sin θ = T1T2/
√
1 + (T1T2)2. BS is a 50:50 beam splitter. UA(C)

represents the circuit unit in which the QDA(C)-microcavity system is embedded. Xi(i=1,2) is
a half-wave plate which performs a polarization bit-flip operation σp

x = |R〉〈L| + |L〉〈R| on
the photon. PDi(i=a,b) is a single-photon detector. DL is a time-delay device.

into the quantum circuit of the faithful parity check, as shown in Fig. 2(b). In the process of the
parity check, the photon will interact with the first circuit unit UA consisting of QDA-microcavity
system and the second circuit unit UC consisting of QDC-microcavity system, where the two
circuit units can be nonidentical and the construction of each one is the same as the one shown in
Fig. 2(a). If the initial state of the electron spins in QDs is |φ±〉 = 1√

2
(| ↑↑〉 ± | ↓↓〉), after the

photon passes through the unbalanced beam splitter UBS, the quantum state of the whole system
consisting of the photon and the electron spins in QDA and QDC is changed from |Ψ〉0 to |Ψ〉1.
Here,

|Ψ〉0 = |R〉|φ±〉, |Ψ〉1 =
1√

1 + (T1T2)2
(T1T2 |R〉1 + |R〉2)|φ±〉, (7)

where the |R〉1 and |R〉2 represent the two wave packets split by UBS emerging in path 1 and path
2 respectively, and T1 and T2 are equal to the transmission coefficients of the first and the second
circuit units respectively. After the wave packet in path 2 passes through the first circuit unit UA,
the whole system consisting of the photon and the electron spins in QDs evolves into

|Ψ〉2 =
1√

1 + (T1T2)2
{T1T2 |R〉1 |φ±〉 + [D1 |φ

±〉|R〉2 + T1 |φ
∓〉|L〉2]}, (8)

where D1 is the reflection coefficient of the first circuit unit UA. If there is a click of the
single-photon detector in the first circuit unit, say PD1, the state of the electron spins in QDA and
QDC is not changed, and the parity mode of the entangled state of electron spins in QDA and
QDC can be checked through injecting another photon into the quantum circuit for the next round
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of parity check. Otherwise, the wave packet in path 2 would pass though the half-wave plate X1
and the second circuit unit UC. After the photon passes through the second circuit unit, the state
of the whole system is changed into

|Ψ〉3 =
1√

1 + (T1T2)2
{T1T2 |R〉1 |φ±〉 + T1[D2 |φ

∓〉|R〉2 + T2 |φ
±〉|L〉2]}, (9)

where D2 is the reflection coefficient of the second circuit unit UC. If there is a click of the
single-photon detector in the second circuit unit, say PD2, the parity mode of the entangled
electron spins in QDA and QDC can be checked through injecting another photon into the quantum
circuit for the next round of parity check after performing an operation σz = | ↑〉〈↑ | − | ↓〉〈↓ | on
electron spin in QDC. Otherwise, the wave packet in path 2 would pass through the half-wave
plate X2, and the state of the whole system becomes

|Ψ〉4 =
T1T2√

1 + (T1T2)2
(|R〉1 + |R〉2)|φ±〉. (10)

Finally, the two wave packets in path 1 and path 2 reunite at the balanced beam splitter BS, and
the final state can be expressed as

|Ψ〉f1 =

√
2(T1T2)2

1 + (T1T2)2
|φ±〉|R〉a. (11)

Here, |R〉a represents that the photon triggers the single-photon detector PDa. Similarly, if the
state of the electron spins in QDA and QDC is |ψ±〉 = 1√

2
(| ↑↓〉 ± | ↓↑〉), after the faithful parity

check process, as shown in Fig. 2(b), the final state of the system can be expressed as

|Ψ〉f2 =

√
2(T1T2)2

1 + (T1T2)2
|ψ±〉|R〉b. (12)

Here, |R〉b represents that the photon triggers the single-photon detector PDb.
In the process of parity check, the single-photon detector PD1 clicks with a probability of
D2
1

1+(T1T2)2
, and the single-photon detector PD2 clicks with a probability of T2

1D2
2

1+(T1T2)2
. The click of

PD1 or PD2 marks the failure of this round of parity check, and the parity mode of entangled
state of the electron spins in QDA and QDC can be checked through injecting another photon into
the quantum circuit directly (or after an operation σz on the electron spin in QDC in the second
circuit unit). That is, the failure of the parity check can be alarmed by the click of PD1 or PD2,
and the parity check can be repeated until success.
With the faithful parity check as shown in Fig. 2(b), the even-parity states |φ±〉 can be

distinguished from the odd-parity states |ψ±〉 by the click of single-photon detector PDa or PDb.
From the final states in the nearly realistic condition, as shown in Eq. (11) and Eq. (12), one can
see that the maximally entangled states |φ±〉 and |ψ±〉 are not changed (such as being destructed
into partially entangled states). Meanwhile, one can see that in the nearly realistic condition,
there is no wrong judgement being made, as the click of the single-photon detector PDb (PDa)
does’t happen when the pair of entangled electron spins in QDs is in the even-parity states |φ±〉
(odd-parity states |ψ±〉). The only difference between the final states |Ψ〉f1 (|Ψ〉f2) in the nearly
realistic condition and the ideal final states |φ±〉|R〉a (|ψ±〉|R〉b) in the specifically ideal condition
is an integrate coefficient

√
2(T1T2)2

1+(T1T2)2
, which only affects the efficiency of the parity check.

3. Imperfect-interaction-free EPP

The four Bell states of a pair of entangled electron spins in two QDs are |φ±〉 = 1√
2
| ↑↑〉 ± | ↓↓〉

and |ψ±〉 = 1√
2
| ↑↓〉 ± | ↓↑〉. Affected by the environmental noise, bit-flip errors or phase-flip
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errors may happen on the entangled systems, which change the maximally entangled state into
the mixed state. The phase-flip error can be transformed into the bit-flip error through local
Hadamard operations. Here, we discuss imperfect-interaction-free entanglement purification on
the QD system in a mixed state with a bit-flip error. To purify the entangled QD system, say
QDA and QDB, another entangled QD system, say QDC and QDD, is needed. The two pairs of
entangled electron spins in the QDs are in the same mixed state with the bit-flip error, which can
be expressed as

ρAB = F |φ+〉AB〈φ
+ | + (1 − F)|ψ+〉AB〈ψ

+ |,
ρCD = F |φ+〉CD〈φ

+ | + (1 − F)|ψ+〉CD〈ψ
+ |.

(13)

Here, F and 1 − F represent the probabilities of the desired state |φ+〉 and the false state |ψ+〉
in the mixed state, respectively. The QDs are shared by two nodes in a quantum network, say
Alice and Bob. The QDA and QDC are kept by Alice, and the QDB and QDD are kept by Bob.
The initial state of the system composed of the electron spins in QDA, QDB, QDC, and QDD is
written as ρ0 = ρAB ⊗ ρCD, which can be seen as a mixture of the pure states |φ+〉AB ⊗ |φ

+〉CD,
|ψ+〉AB ⊗ |ψ

+〉CD, |φ+〉AB ⊗ |ψ
+〉CD, and |ψ+〉AB ⊗ |φ

+〉CD with the probabilities F2, (1 − F)2,
F(1 − F), and F(1 − F), respectively.

The schematic diagram for our imperfect-interaction-free EPP for QD system is shown in Fig. 3.
The first step of our imperfect-interaction-free EPP is to distinguish the states |φ+〉AB ⊗ |φ

+〉CD
and |ψ+〉AB ⊗ |ψ

+〉CD from the states |φ+〉AB ⊗ |ψ
+〉CD and |ψ+〉AB ⊗ |φ

+〉CD. This step can be
completed through faithful parity check on the electron spins in QDA and QDC by Alice and
on the electron spins in QDB and QDD by Bob in the nearly realistic condition (the schematic
diagram for the faithful parity check is shown in Fig. 2(b)). After Alice performs the faithful
parity check on the electron spins in QDA and QDC and Bob performs the same operation on the
electron spins in QDB and QDD, the pure states of the identical two pairs of electron spins in the
QDs are classified into two cases based on the results of the parity check.

Fig. 3. Schematic diagram for imperfect-interaction-free EPP for QD system. Faithful
parity check is the first step of the EPP, which is performed on the electron spins in QDA
and QDC (QDB and QDD) by Alice (Bob). M represents measurement performed on the
electron spins in QDC and QDD in the orthogonal basis {|+〉, |−〉}, which is the second step
of the EPP.

In case (1), the electron spins in QDA and QDC and the electron spins in QDB and QDD are in
different parity-mode states, which corresponds to the states |φ+〉AB |ψ

+〉CD and |ψ+〉AB |φ
+〉CD.

In this case, Alice and Bob cannot identify which pair of entangled electron spins in QDs has the
bit-flip error. Therefore, they discard these two pairs of electron spins in QDs.

In case (2), the electron spins in QDA and QDC and the electron spins in QDB and QDD are in
the same parity-mode state, which corresponds to the states |φ+〉AB |φ

+〉CD and |ψ+〉AB |ψ
+〉CD. In

detail, when the electron spins in QDA and QDC and the electron spins in QDB and QDD are both
in even-parity states, i.e. the single-photon detector PDa at Alice’s side and the single-photon
detector PDa at Bob’s side would click respectively in the parity check process, the four electron
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spins in the four QDs are projected into a mixed state composed of states |Ω〉1 and |Ω〉2. Here,

|Ω〉1 =
1
√
2
(| ↑↑↑↑〉 + | ↓↓↓↓〉)ABCD, |Ω〉2 =

1
√
2
(| ↑↓↑↓〉 + | ↓↑↓↑〉)ABCD. (14)

On the contrary, when the electron spins in QDA and QDC and the electron spins in QDB and
QDD are both in odd-parity states, i.e. the single-photon detector PDb at Alice’s side and the
single-photon detector PDb at Bob’s side would click respectively in the parity check process,
the four electron spins in the four QDs are projected into a mixed state composed of states |Ω〉3
and |Ω〉4. Here,

|Ω〉3 =
1
√
2
(| ↑↑↓↓〉 + | ↓↓↑↑〉)ABCD, |Ω〉4 =

1
√
2
(| ↑↓↓↑〉 + | ↓↑↑↓〉)ABCD. (15)

The state |Ω〉3 (|Ω〉4) can be transformed into the state |Ω〉1 (|Ω〉2) with bit-flip operations
σx = | ↑〉〈↓ | + | ↓〉〈↑ | on both the electron spins in QDC and QDD. In this case, Alice and Bob
reserve the electron spins in QDA, QDC and QDB, QDD, and they perform the second step of our
imperfect-interaction-free EPP, which is the measurements on the electron spins in QDC and
QDD in the orthogonal basis {|+〉 = 1√

2
(| ↑〉 + | ↓〉), |−〉 = 1√

2
(| ↑〉 − | ↓〉)} as shown in Fig. 3.

The evolution can be described as:

|Ω〉1 ⇒
1
2
[|φ+〉AB(| + +〉 + | − −〉)CD + |φ

−〉AB(| + −〉 + | − +〉)CD],

|Ω〉2 ⇒
1
2
[|ψ+〉AB(| + +〉 − | − −〉)CD + |ψ

−〉AB(| − +〉 − | + −〉)CD].
(16)

If the results of the measurements on the electron spins in QDC and QDD are | + +〉 or | − −〉,
Alice and Bob obtain the mixed state consisting of |φ+〉AB and |ψ+〉AB directly. If the results
of the measurements on the electron spins in QDC and QDD are | + −〉 or | − +〉, mixed state
consisting of |φ+〉AB and |ψ+〉AB can be obtained with an operation σz = | ↑〉〈↑ | − | ↓〉〈↓ | on
the electron spin in QDB. That is to say, in case (2), Alice and Bob can obtain the mixed states
consisting of |φ+〉AB with the probability of F2 and |ψ+〉AB with the probability of (1 − F)2.
Thus, the first round of our imperfect-interaction-free EPP is completed, and the state of the

electron spins in QDA and QDB is transformed into

ρ′AB = F′ |φ+〉AB〈φ
+ | + (1 − F′)|ψ+〉AB〈ψ

+ |. (17)

Here, F′ = F2

F2+(1−F)2 is the desired fidelity of the final state after the first round of entanglement
purification, which is higher than the initial fidelity F when F>1/2. Through iterating the
entanglement purification process, the fidelity of the state of the electron spins in QDA and
QDB can be improved dramatically. The efficiency of one round of entanglement purification is
Y = F2 + (1 − F)2.

4. Discussion

The interaction between a QD-microcavity system and a circularly polarized photon is a useful
platform in quantum information processing. When the realistic experiment parameters deviate
from the specifically ideal ones, the perfect interaction between an artificial atom inside a
microcavity (such as QD-microcavity system) and a circularly polarized photon turns into the
imperfect one, which results in the wrong judgement on the parity mode and the destruction on
the measured entangled state of a parity check in the realistic condition. Let’s take the parity
check in the entanglement purification protocol using the perfect interaction in the specifically
ideal condition [80] as an example to illustrate the bad effect on the parity check in the realistic
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condition. In the specifically ideal condition, after the parity check, the states 1√
2
(|00〉 ± |11〉)|ϕ+〉

and 1√
2
(|01〉 ± |10〉)|ϕ+〉 of the hybrid system consisting of the measured system and the auxiliary

system would be respectively changed into 1√
2
(|00〉 ± |11〉)|ϕ+〉 and 1√

2
(|01〉 ± |10〉)|ϕ−〉, which

means the final state of the auxiliary system (|ϕ+〉 or |ϕ−〉) would reflect the parity mode of the
measured system (even or odd), and meanwhile the states 1√

2
(|00〉 ± |11〉) and 1√

2
(|01〉 ± |10〉)

of the measured system would not be changed. However, in the realistic condition, the states
1√
2
(|00〉 ± |11〉)|ϕ+〉 would be changed into 1√

2
(|00〉 ± ξ |11〉)|ϕ+〉 ± ζ |11〉|ϕ−〉 after the parity

check. Obviously, the state of the auxiliary system remains unchanged for correct judgement,
and the maximally entangled states 1√

2
(|00〉 ± |11〉) of the measured system are destructed into

partially entangled states 1√
2
(|00〉 ± ξ |11〉). While the state of the auxiliary system is changed for

wrong judgement, and the state of the auxiliary system is projected into ±ζ |11〉. For the state
1√
2
(|01〉 ± |10〉)|ϕ+〉, after the parity check in the realistic condition, it would be changed into

ε√
2
(|01〉 ± |10〉)|ϕ+〉 + ε√

2
(|01〉 ± |10〉)|ϕ−〉, which means there would be a wrong judgement on

the parity mode when the state of the measured system remains unchanged with the possibility
of |ε |2. Here, ξ = r20+r2

2 , ζ = r20−r2

2 , ε = − r0+r
2 , and ε = r−r0

2 are the functions of the reflection
coefficients (r0 and r) of the circularly polarized photon after interacting with an artificial atom
inside a microcavity and they vary with the realistic experiment parameters such as the coupling
strength, decay rate, and so on. Therefore, the imperfect interaction due to the realistic experiment
parameters would lead a parity check to an unfaithful one.

The unfaithful parity check with the wrong judgement would make the fidelity of the final state
lower than the desired one in the entanglement purification process. For example, the parity check
makes correct judgements on the parity mode of the states |φ+〉AB ⊗ |φ

+〉CD, |ψ+〉AB ⊗ |ψ
+〉CD, and

|φ+〉AB ⊗ |ψ
+〉CD, but it makes a wrong judgement on the parity mode of the state |ψ+〉AB ⊗ |φ

+〉CD.
That is, Alice and Bob may misdeem that the electron spins in QDA and QDC and electron spins
in QDB and QDD are in the same parity-mode states when they are in the state |ψ+〉AB ⊗ |φ

+〉CD.
Then they will reserve the electron spins in QDA, QDB, QDC, and QDD when they are in the
states |φ+〉AB ⊗ |φ

+〉CD, |ψ+〉AB ⊗ |φ
+〉CD, and |ψ+〉AB ⊗ |ψ

+〉CD, but only discard the electron
spins in QDs when they are in the state |φ+〉AB ⊗ |ψ

+〉CD. Thus, after the second step, the first
round of the entanglement purification is accomplished and the fidelity of the final state is
F′′ = F2+0.5F(1−F)

F2+(1−F)2+F(1−F) , which is lower than the desired fidelity F′ in the condition of 1/2<F<1.
We have to admit that there exists a case, in which the parity check makes correct judgements
on the parity mode of the states |φ+〉AB ⊗ |φ

+〉CD, |φ+〉AB ⊗ |ψ
+〉CD, and |ψ+〉AB ⊗ |φ

+〉CD, but it
makes a wrong judgement on the parity mode of the state |ψ+〉AB ⊗ |ψ

+〉CD. That is, the electron
spins in QDA, QDB, QDC, and QDD are only reserved when they are in the state |φ+〉AB ⊗ |φ

+〉CD.
Thus, after the second step, the first round of the entanglement purification is accomplished and
the fidelity of the final state is 1. However, this case happens occasionally. More often, the wrong
judgement on the parity mode of the state would lead to a lower fidelity of the final state than
the desired one. Therefore, making a correct judgements on the parity modes of pure entangled
states in the mixed state is of great importance.
Meanwhile, the unfaithful parity check with destruction on the entangled states would also

lead the maximally entangled state to the partially entangled one in entanglement purification
process. Let us take case (2) of Sec. 3 (i.e. the electron spins in QDA and QDC and the
electron spins in QDB and QDD are both in the even-parity states) as an example to analyze the
importance of the nondestruction of a parity check. When the parity check has a destruction on
the entangled states in the realistic condition, after the parity check, one of the pure state |Ω〉1 in
the mixed state of the four electron spins in QDA, QDB, QDC, and QDD would be changed into
|Ω〉′1 = (µ| ↑↑↑↑〉 + ν | ↓↓↓↓〉)ABCD, where µ , ν. Here, µ and ν are quantities varying with the
experiment parameters of the QD-microcavity system and the circularly polarized photon in the
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realistic condition. Thus, Alice and Bob obtain the states

|Ω〉′1 ⇒
1
2
[|φ+〉′AB(| + +〉 + | − −〉)CD + |φ

−〉′AB(| + −〉 + | − +〉)CD], (18)

where |φ±〉′AB = (µ| ↑↑〉 ± ν | ↓↓〉). After performing measurements on the electron spins in QDC
and QDD in the orthogonal basis {|+〉, |−〉}, Alice and Bob would obtain the partially entangled
states |φ±〉′AB rather than the maximally entangled states |φ±〉AB. To distill the partially entangled
states |φ±〉′AB to the maximally entangled states |φ±〉AB, entanglement concentration is required.
Fortunately, our imperfect-interaction-free EPP can avoid being affected by the imperfect

interaction in the nearly realistic condition, as the faithful parity check can make correct judgement
on the parity mode of the measured entangled state without destruction. The faithful parity check
can correctly identify the parity modes of the pure entangled states in the mixed state of the
electron spins in QDs, i.e. correctly distinguish the states |φ+〉AB ⊗ |φ

+〉CD and |ψ+〉AB ⊗ |ψ
+〉CD

from the states |φ+〉AB ⊗ |ψ
+〉CD and |ψ+〉AB ⊗ |φ

+〉CD. Meanwhile, the faithful parity check has
nondestruction on the measured entangled states in entanglement purification. Therefore, with
our imperfect-interaction-free EPP, the desired fidelity of mixed state can be achieved even in the
nearly realistic condition, which can be further improved by iterating the purification process,
and maximally entangled states |φ±〉AB and |ψ±〉AB would not be changed into partially entangled
states, which means the entanglement concentration is not required after purification.

Our imperfect-interaction-free EPP relaxes the strict requirement for two absolutely identical
QD-microcavity systems and the high requirement for the QD-microcavity system. Embedding a
QD in a microcavity can strengthen the interaction between the circularly polarized photon and
the electron spin in a QD, while manufacturing two QD-microcavity systems with absolutely
identical experimental parameters is a strict requirement in experiment. In our faithful parity
check, the transmission coefficients of the two circuit units T1 and T2, varying with the experiment
parameters of two QD-microcavity systems, can be different, which means that the faithful
parity check could be constructed with nonidentical QD-microcavity systems without affecting
the features of nondestruction and correct judgement on the parity mode in the nearly realistic
condition. Therefore, the experimental realization of our imperfect-interaction-free EPP doesn’t
need two absolutely identical QD-microcavity systems. Meanwhile, from Eq. (11) and Eq. (12),
one can see that the experiment parameters of the QD-microcavity systems would not affect
the features of nondestruction and correct judgement of the faithful parity check in the nearly
realistic condition, but only affect the integrate coefficient of the final state after parity check,
which determines the efficiency of the parity check. From Eq. (11) and Eq. (12), the efficiency
of one round of parity check can be obtained as η = 2(T1T2)

2

1+(T1T2)2
. For simplicity but with no lack

of rigor, we plot the efficiency η as a function of g/(κ + κs) and κs/κ with ωX− = ωC = ω and
γ/κ = 0.1 for both two QD-microcavity systems in the two circuit units, as shown in Fig. 4. When
g/(κ + κs)>1, the efficiency η>90.27% and η>74.05% can be obtained with the cases κs/κ = 0
and κs/κ = 0.2 respectively. When g/(κ + κs) is improved to 2, the efficiency η = 93.92% and
η = 76.70% can be obtained with the cases κs/κ = 0 and κs/κ = 0.2 respectively. One can see
that, utilizing the imperfect interaction in the nearly realistic condition, a faithful parity check is
constructed with nearly unity fidelity and the efficiency of it is still acceptable compared with
the previous works, the reason of which is that we only transfer the imperfect interaction into a
heralded failure by the single photon detectors in the circuit units but not decrease the effective
interaction which can be used to assist in completing the parity check.
The interaction between the QD-microcavity system and the circularly polarized photon

is utilized to construct the faithful parity check in our imperfect-interaction-free EPP. The
experiment parameters of the QD-microcavity system and the single photon would only influence
the interaction between the QD-microcavity system and the circularly polarized photon, but not
influence the features of nondestruction and correct judgement of our faithful parity check in the
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Fig. 4. The efficiency of the faithful parity check vs g/(κ+ κs) and κs/κ withωX− = ωC = ω
and γ/κ = 0.1.

nearly realistic condition. In a more generally realistic condition, the interaction between the
QD-microcavity system and the circularly polarized photon could be decreased by a factor of
[1 − exp(−τ/Γ)] due to the dephasing of the electron spin in the QD. However, this influence on
the features of nondestruction and correct judgement of our faithful parity check can be neglected
as an electron spin coherence time Γ ' 2.6µs [81] has been experimentally achieved and the
cavity photon time τ = 4.5ns [82] is available. Imperfect optical selection induced by heavy hole
mixing would also affect the features of nondestruction and correct judgement of our faithful
parity check a little. Fortunately, this imperfect mixing can be suppressed by engineering the
shape and the size of QDs or by choosing the appropriate types of QDs [83]. Overall, even
taking the realistic condition into account, the faithful parity check can also remain the features
of nondestruction and correct judgement.
Our imperfect-interaction-free EPP works in a repeat-until-success pattern. In our EPP, an

auxiliary circularly polarized photon is used to assist in accomplishing our faithful parity check.
According to the click of the single-photon detector PDa or PDb at the out-put port of the circuit
of the faithful parity check, the parity mode of the entangled state can be known. Meanwhile, due
to the experiment parameters of the QD-microcavity system and the circularly polarized photon
in the realistic condition would deviate from the ones in the specifically ideal condition, there is a
possibility that the parity check fails. Fortunately, the failure of the parity check can be alarmed
by the click of the single-photon detector in the first circuit unit or the one in the second circuit
unit. In this case, the parity mode of the entangled QD systems can be checked through injecting
another circularly polarized photon. Therefore, the faithful parity check is a heralded one and the
imperfect-interaction-free EPP can be repeated until success.

5. Summary

In conclusion, we propose an imperfect-interaction-free EPP for QD system based on faithful
parity check, which can make a correct judgement on the parity mode and have no destruction
on the entangled state in the nearly realistic condition. Our imperfect-interaction-free EPP can
guarantee the fidelity of the mixed state to a desired one and keep the maximally entangled states
in the mixed states from being destructed into partially entangled ones even in the nearly realistic
condition. Meanwhile, our imperfect-interaction-free EPP relaxes the strict requirement for two
absolutely identical QD-microcavity systems and the high requirement for the QD-microcavity
system. In addition, our imperfect-interaction-free EPP can be repeated until success with the
heralded function of faithful parity check, where the failure can be alarmed by the single-photon
detector. These distinctive features make this imperfect-interaction-free EPP for quantum
stationary systems have more practical applications in solid quantum repeaters for a large-scale
quantum network.
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