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Abstract: Adiabatic quantum control is a very important approach for quantum physics and
quantum information processing (QIP). It holds the advantage with robustness to experimental
imperfections but accumulates more decoherence due to the long evolution time. Here, we
propose a universal protocol for fast and robust quantum control in multimode interactions of a
quantum system by using shortcuts to adiabaticity. The results show this protocol can speed up
the evolution of a multimode quantum system effectively, and it can also keep the robustness very
good while adiabatic quantum control processes cannot. We apply this protocol for the quantum
state transfer in QIP in the photon-phonon interactions in an optomechanical system, showing a
perfect result. These good features make this protocol have the capability of improving effectively
the feasibility of the practical applications of multimode interactions in QIP in experiment.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

As a very important approach, adiabatic quantum control has been used widely in quantum physics.
Typical applications are the rapid adiabatic passage technique [1] and the stimulated Raman
adiabatic passage technique [2] for two-level and three-level quantum systems, respectively.
According to the adiabatic theorem [3], if the state of a quantum system remains non-degenerate
and starts in one of the instantaneous eigenstates, it will evolve along this eigenstate in an
adiabatic process. However, the change of coupling, described by a small parameter ε, results
in an undesired transition between the different eigenstates with the order of exp(−1/ε) [4, 5].
Therefore, to suppress the undesired transition, the adiabatic approach should be changed slowly
enough but accumulates more total decoherence in practice. Both the intrinsic undesired transition
and the environmental decoherence usually lead to the evolution error and decrease the fidelity.
Usually a fast process with a high fidelity is needed in quantum information processing (QIP),
such as quantum computing. To overcome this conflicting, several protocols, called shortcuts
to adiabaticity (STA) [6–16], have been proposed, such as the transitionless quantum driving
(TQD) [8–13]. STA has been used for some practical applications in QIP [17–30], such as
quantum state transfer [17, 18], entanglement generation [19, 20] and quantum gates [22–26].
In recent years, STA has drawn a wide attention and been demonstrated well in experiment in
different systems, such as Bose-Einstein condensates in optical lattices [31], cold atoms [32],
trapped ions [33] and nitrogen-vacancy centers in diamond [34, 35].

Multimode interactions are common in quantum physics and have been studied in some physical
systems. For example, in optomechanical systems [36–40], photon-phonon-photon [41–45] and
phonon-photon-phonon [46–49] interactions are two typical multimode interactions. Effectively
controlling multimode interactions is a very important task for many practical applications of
a quantum system in QIP, such as quantum state transfer [42, 43] and entanglement generation
[44,45]. The adiabatic quantum control protocols for multimode interactions have been proposed
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in optomechanical systems [42, 43]. Those protocols also have a big challenge in conflicting
between speed and robustness.
To solve the challenge in conflicting between speed and robustness in adiabatic quantum

control approach, here, we propose the first protocol to realize a fast and robust quantum control
for multimode interactions of a quantum system. It has the following remarkable advantages.
First, compared with the adiabatic control, our protocol is faster and can improve the speed of
the whole multimode interaction process, which decreases the total decoherence of the quantum
system in QIP. Second, the process has no undesired transition between eigenmodes and higher
fidelities. Third, it is robust against the experimental imperfection of time interval. These good
features effectively improve the feasibility of practical applications of multimode interactions in
QIP and quantum state engineering.

2. Multimode interactions and adiabatic quantum control
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Fig. 1. Schematic diagram for universal multimode interactions in a quantum system. Each
mode can be represented by a harmonic oscillator. a3 is a intermediate mode for connecting
two others.

We show the three-mode quantum system in Fig. 1. Two harmonic oscillators couple to each
other via the intermediate one. The effective Hamiltonian of this system is given by

Ĥ1 = g1â†1 â3 + g2â†2 â3 + H.c., (1)

where âi(â
†

i ) (i = 1, 2, 3) are the annihilation (creation) operators for the corresponding i-th
mode with the frequency ωi , respectively. gi(t) is the effective coupling strength between the
correspondingmodewith the intermediate one. According to the formula id Â(t)/dt = [Â(t), Ĥ(t)],
the Heisenberg equations of all operators âi of the system Ĥ1 can be derived in one expression as

id®v(t)/dt = M(t)®v(t), (2)

where the vector operator is ®v(t) = [â1(t), â3(t), â2(t)]T , and the matrix M(t) can be expressed as

M(t) =


0 g1(t) 0

g1(t) 0 g2(t)

0 g2(t) 0


. (3)

The matrix M(t) has the eigenvalues λ = 0,±g0 and the corresponding eigenmodes are ψ1 =

[−g2/g0, 0, g1/g0]
T and ψ2,3 = [g1/g0,±1, g2/g0]

T /
√

2, where g0 =
√
g2

1 + g
2
2 . The eigenmode

ψ1 with the eigenvalues λ = 0 is a dark mode which decouples with the intermediate mode.
The adiabatic quantum control is an effective approach for QIP between the modes 1 and

2, such as the quantum state transfer between these two modes [42, 43]. We show the process
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of adiabatic quantum state transfer in Figs. 2 (d) - 2(f). The small population of intermediate
mode indicates the process is robust against the dissipation from the intermediate mode by
evolving along the dark state adiabatically. However, to suppress the undesired transition between
different eigenmodes, the near perfect adiabatic process needs so long time that accumulates more
decoherence in the whole process. This infidelity is a big challenge for an adiabatic quantum
control.
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Fig. 2. Simulation of two quantum control approaches for the quantum state transfer in
multimode interactions. The initial state is prepared in mode a1 with the Fock state |1〉. All
the labels for curves with different colors are given in the last figures of every row. p1, p2
and p3 are the populations for the modes a1, a2 and a3, respectively. (a)-(c) are the variation
of coupling strengths. (d)-(f) are the corresponding adiabatic quantum control processes.
(g)-(i) are the corresponding fast and robust quantum control processes. The parameter
changes as follow: (a) ν = 0.5; (b) ν = 1; (c) ν = 2.

3. Fast and robust quantum control for multimode interactions

To improve the speed and mitigate the infidelity, we use the STA to speed up the adiabatic process
in three-mode interactions of a quantum system. The main obstacle for accelerating the adiabatic
process is the transition amplitude between eigenmodes which will increase when the speed
is accelerated. If the speed is up, the evolution path will deviate the original way and more
inherent errors are produced. Therefore, the robustness becomes lower. To overcome this mutual
restriction, removing the transition is the first task. According to the TQD algorithm [10], one can
find infinitely many Hamiltonians Ĥ(t) which differ from each other only by a phase to guarantee
no transition between the eigenstates of a quantum system with an arbitrary time-dependent
Hamiltonian Ĥ0(t) for any time. Disregarding the phase factors [6, 25], the simplest Hamiltonian
is derived with Ĥ(t) = i

∑
n | Ûn〉〈n| [10], where |n(t)〉 is the instantaneous eigenstate of Ĥ0(t). In

Heisenberg equations, we calculate the matrix M1(t) by using the formula given by

M1(t) = i
∑
n

|
∂ψn(t)
∂t
〉〈ψn(t)|, (4)
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where |ψn(t)〉 is the eigenmode. Substituting the all eigenmodes into Eq. (4), one can get a new
matrix M1(t) written by

M1(t) = i
3∑

n=1

Ûψnψ
†
n =


0 0 iG

0 0 0

−iG 0 0


, (5)

where G = ( Ûg1g2 − g1 Ûg2)/g
2
0 . The result of the matrix M1(t) indicates that there exists a direct

transition between the modes 1 and 2. We choose the adiabatic coupling strengths with ‘Vitanov’
shape [50] expressed as

g1(t) = g0 sin(θ(t)),
g2(t) = g0 cos(θ(t)),
θ(t) = π

2
1

1+e−ν(t−5/ν) . (6)

Here, ν describes the duration of coupling strengths. Therefore, with above functions, the
transitionless matrix M1 is given by making G = Ûθ(t) in Eq. (5). The comparison between the
adiabatic quantum control and the accelerated TQD protocol in quantum state transfer process is
shown in Fig. 2. We change the duration of coupling strengths and the adiabatic processes are
accelerated. But the results become imperfect. However, by using the TQD, the new quantum
control processes always keep the perfect result in the population transfer. Comparing (g), (h)
and (i) in Fig. 2, the final time for completing the quantum state transfer becomes shorter. The
total time in Fig. 2 (i) is three times shorter than that in Fig. 2 (g).
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Fig. 3. (a) Practical schematic diagram for photon-phonon-photon interactions induced by
the optomechanical system composed of two cavities and a membrane. The two cavity
walls and the middle membrane are fixed, but the membrane can be vibrated. (b) Schematic
diagram for phonon-phonon-phonon interactions. Two cavity walls are fixed on cantilevers.

4. Practical application for photon-phonon interactions

A typical physical system for photon-phonon interactions is an optomechanical one. For
three-mode interactions in this quantum system, there are two kinds of interactions, i.e., the
photon-phonon-photon interaction shown in Fig. 3(a) and the phonon-photon-phonon interaction
shown in Fig. 3(b). The similar methods can be applied to the quantum control of these two
models. For simplicity, here we consider the model in Fig. 3(a) in which an optomechanical
system composed of two cavity modes coupled to each other via the mechanical mode. Two
optical cavities connect to each other via a middle membrane. After the standard linearization
procedure, the Hamiltonian of the system is given by (~ = 1) [42, 43]

Ĥ2 = ωmb̂†b̂ +
∑
i=1,2

[
−∆i â

†

i âi + Gi(â
†

i + âi)(b̂ + b̂†)
]
, (7)
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Fig. 4. Simulation of the quantum state transfer by using our fast and robust quantum
control in optomechanical interactions. (a) The shape of new coupling strengths with the
parameters ν = 2 MHz and δ = 40 MHz. (b) The process of the population transfer by
using the coupling in (a). P1, P2 and P3 are the populations for the optical modes 1, 2
and the mechanical mode, respectively. The population of the phonon is amplified in the
insert. (c) Variation of the maximal average phonon number with detuning. The insert is
the variation of the maximal average phonon number vs the rate between detuning and the
maximal coupling strength.

where âi(â
†

i ) (i = 1, 2) and b̂(b̂†) are the annihilation (creation) operators for the i-th cavity mode
with frequency ωi and the mechanical mode, respectively. ωm is the mechanical frequency.
∆i = ωdi − ωi and Gi = G0i

√
ni are the laser detuning and the effective linear coupling strength,

respectively. G0i and ni are the single-photon optomechanical coupling rate and the intracavity
photon number induced by the driving field with the frequency ωdi , respectively. We consider
the case that both cavity modes are driven near the red sidebands. In the interaction picture, the
Hamiltonian of the system becomes (under the rotating-wave approximation)

Ĥ3 =
∑
i=1,2

δi â
†

i âi + Gi(â
†

i b̂m + b̂†mâi), (8)

where δi = −∆i − ωm. The Heisenberg equation of the system can be derived with

id®vop(t)/dt = Mop(t)®vop(t), (9)

where the vector operator ®vop(t) = [â1(t), b̂m(t), â2(t)]T , and the matrix Mop(t) is the same as
Eq. (3) with the condition δi = 0. There exists an optomechanical dark mode [41] and it is used
to make the adiabatic control with QIP between two optical modes.

To realize a fast and robust quantum control for above process, we usually need to seek a direct
coupling between two optical modes based on Eq. (5). Here, it is hard to construct a direct
coupling and we replace it with an effective two-mode interaction. We set the large detuning
condition with δi � Gi in Eq. (8) and the large energy offsets suppress the transitions between
the optical mode and the mechanical mode [51,52]. Hence, one can adiabatically eliminate the
mechanical mode b̂ and obtain the effective beam-splitter-like Hamiltonian

Ĥ4 =
∑
i=1,2
(δi +Ωi)â

†

i âi +Ω(â
†

1 â2 + â†2 â1), (10)

where Ωi = G2
i /δi and Ω = G1G2(δ

−1
1 + δ

−1
2 )/2. We set δ1 +Ω1 = δ2 +Ω2 and δ = δ1 = δ2. In

the new interaction picture under the Hamiltonian Ĥ0 =
∑

i=1,2(δi +Ωi)â
†

i âi , one can derive the
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matrix M2(t) in the Heisenberg picture with

M2(t) =


0 0 G1G2

δ

0 0 0
G1G2
δ 0 0


. (11)

The effective matrix M2(t) is equivalent to M1(t) shown in Eq. (4) derived by the TQD algorithm,
when

G1G2
δ
=

g1 Ûg2 − Ûg1g2

g2
0

. (12)

The evolutions of the photon and the phonon in the system are plotted in Fig. 4 by using the
Hamiltonian in Eq. (8). With the adiabatic coupling in Eq. (6), Eq. (12) becomes G1G2 = δ Ûθ(t).
Here, we design the coupling with G1 = G2 shown in Fig. 4(a). The other parameters should be
chosen to satisfy the large detuning condition δ′ � Gi and δ1 +Ω1 = δ2 +Ω2. Here we choose
δ = 40 MHz and ν = 2 MHz.
The photon in cavity 1 is transferred to cavity 2 by using our protocol with a higher fidelity,

shown in Fig. 4(b). The phonon number is suppressed in the whole process and the maximum
value is about 0.02 due to the large detuning interaction. From Fig. 4(c), one can see that the
maximal average phonon number is inversely proportional to the rate between the detuning and
the maximal coupling strength.
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Fig. 5. Fidelities for the parameter time deviation ∆t. The range of the time interval
is [−0.60, 0.60]. The positive and negative values represent the time delay and advance,
respectively. G1 (G2) is the result from changing G1 (G2) and keeping G2 (G1) unchanged.
The parameters are chosen to be ν = 2 MHz and δ = 40 MHz.

5. Analysis of robustness and fidelity

It is hard to accurately control the time interval between two coupling strengths in the actual
experiment. Therefore we consider the influence caused by a small deviation of the time interval
in Fig. 5. We tune the time interval from −0.6µs to 0.6µs, and the results indicates that our
protocol is insensitive to the deviation of the time interval.
When the dissipation of the mechanical oscillator and the decay of the cavity are taken into

account, the dynamics of the quantum system described by the Lindblad form master equation is
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expressed by

d ρ̂
dt
= i[ρ̂, Ĥs(t)]+ κ1 L̂[â1]ρ̂+ κ2 L̂[â2]ρ̂+ γmD̂[b̂m]ρ̂, (13)

where ρ̂ and Ĥs(t) are the density matrix and the Hamiltonian of the multimode interactions,
respectively. κ1 and κ2 represent the decay rates of the cavities 1 and 2, respectively. γm is the
mechanical damping rate. L̂[Â]ρ̂ = (2Âρ̂Â† − Â† Âρ̂ − ρ̂Â† Â)/2. D̂[Â]ρ̂ = (nth + 1)(2Âρ̂Â† −
Â† Âρ̂ − ρ̂Â† Â)/2 + nth(2Â† ρ̂Â − ÂÂ† ρ̂ − ρ̂ÂÂ†)/2, where nth is the thermal phonon number
of the environment. Here, we choose the Hamiltonian Ĥ3 to calculate the master equation.
The parameters are chosen with γm = 500 Hz and nth = 100 and the decay is defined with
κ = κ1 = κ2. We calculate the fidelity with the formula F = 〈01|trm[ρ̂(t)]|01〉. Here |01〉
represents the state with zero and one photon in the cavities 1 and 2, respectively. trm[ρ̂(t)] is the
reduced density matrix by tracing the mechanical oscillator degree of freedom. The fidelities are
plotted in Fig. 6(a) and (b) for the adiabatic and fast protocols, respectively. The fidelities of
the fast protocol are higher than the adiabatic protocol. As the process is accelerated, the total
evolution time decreases.
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Fig. 6. Fidelity of the TQD process in the present of different dissipations κ in optomechanical
interactions. (a) Fidelities for the adiabatic quantum control. Here, we choose ν = 0.5 MHz.
(b) Fidelities for the fast quantum control process. Parameters are chosen as γm = 500 Hz
and nth = 100.

6. Conclusion

To conclude, we have proposed a universal protocol to realize a fast and robust quantum control
for multimode interactions in a quantum system by using STA. We also have applied this protocol
in a practical photon-phonon-photon interaction model for the quantum state transfer in QIP.
Our protocol has the following remarkable advantages. First, compared with the adiabatic
protocol, it is faster as it can improve the speed of a multimode interaction, which reduces more
decoherence in the whole evolution process of the quantum system. Second, under the fast
process, there is no undesired transition between eigenmodes. Third, it is also robust against
some practical experimental imperfections. These good features can effectively improve the
feasibility of practical applications of multimode interactions in QIP in experiment.
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