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Dark state polarizing a nuclear spin in the vicinity of a nitrogen-vacancy center
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The nuclear spin in the vicinity of a nitrogen-vacancy (NV) center possesses long coherence time and convenient
manipulation assisted by the strong hyperfine interaction with the NV center. It is suggested for the subsequent
quantum information storage and processing after appropriate initialization. However, current experimental
schemes are either sensitive to the inclination and magnitude of the magnetic field or require thousands of
repetitions to achieve successful realization. Here, we propose a method to polarize a 13C nuclear spin in the
vicinity of an NV center via a dark state. We demonstrate theoretically and numerically that it is robust to polarize
various nuclear spins with different hyperfine couplings and noise strengths.
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I. INTRODUCTION

Benefiting from quantum entanglement [1,2], quantum
information processing can effectively speed up computation
and ensure security of information [3]. As the basic element,
the quantum bit (qubit) lies at the heart of quantum information
processing [3,4]. Solid-state qubits are a promising candidate
because they might well explore the well-developed tech-
nology of the semiconductor industry [5,6]. Remarkably, the
nitrogen-vacancy (NV) center in diamond has been recognized
as an intriguing choice since it is of easy accessibility and
long coherence time at room temperature [7–11]. To date,
various applications including quantum information process-
ing and quantum metrology have been successfully realized
in the NV centers [12–14]. For example, different versions
of transitionless driving algorithms have been fully utilized
to accelerate quantum control in the NV centers [15–18].
Besides, the NV centers have been explored to probe the
internal dynamics of clusters of nuclear spins by dynamical
decoupling [19,20]. The NV center has also been proposed
to detect the radical-pair chemical reaction in biology [21]
and weak magnetic fields [22]. Due to the quantum nature of
the surrounding nuclear-spin bath, the anomalous decoherence
effect of the NV center has been theoretically predicted [23]
and experimentally verified [24].

Apart from the electron spin of the NV center, the nuclear
spins in the vicinity of an NV center is of broad interest to
the community. Due to much longer coherence time, nuclear
spins are more frequently used in quantum information storage
and processing [25–33]. However, it is difficult to initialize
and control the nuclear spins because of their small magnetic
moments. Utilizing an ancillary electronic spin to couple with
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the nuclear spin by the hyperfine interaction may effectively
overcome this limitation.

To our best knowledge, there are three kinds of experimental
schemes which have been successfully demonstrated to ini-
tialize the nuclear spins around NV centers. A straightforward
approach is to repeatedly perform projective measurements
until the desired state is observed [28,29]. An alternative is to
bring the excited (ground) state close to the level-anticrossing
point by applying a specific static magnetic field [27,34]. In the
last but widely used approach [25,26,31,35,36], the electron
spin is first initialized, and then its polarization is coherently
swapped to the nuclear spin. After tens of repetitions of
the above process, nearly complete polarizations of both
electronic and nuclear spins are achieved. Here, we remark
that in each repetition the swapping of polarization between
the electron and nuclear spins is essentially a quantum-state
transfer process.

For any state transfer process, the fidelity is inevitably
influenced by the noise due to coupling to the bath. On the
other hand, we notice that the dark state has been extensively
applied to coherently transfer energy in photosynthetic light
harvesting [37] and to perfectly transfer state in optome-
chanical systems [38,39]. The coherent coupling between a
surface acoustic wave and an NV center was experimentally
realized via the dark state recently [40]. Inspired by these
discoveries, we theoretically propose a method to polarize
a 13C nuclear spin in the vicinity of an NV center by the
dark state. To create the dark state for the state transfer,
two-photon resonance is required, i.e., � = 0. The transfer
fidelity is further optimized by one-photon resonance, i.e.,
δ = 0. In order to provide an effective guidance for the
experimental realization, we perform an analytical analysis
on the probability of the nuclear-spin-polarized state by the
Schrödinger equation with a non-Hermitian Hamiltonian. It is
shown that when the Rabi frequencies of the two pulses are
equal, the polarization is predicted to reach the maximum at
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the given time. Further numerical simulation demonstrates an
anomalous effect whereby the polarization of a nuclear spin
with a smaller hyperfine interaction can be even higher than a
nuclear spin at the nearest-neighbor site due to the transverse
hyperfine interaction. Compared with the above methods, our
scheme works effectively over a broad range of magnetic field
and only a few repetitions are required.

II. SYSTEM MODEL

As shown in Fig. 1(a), the NV center in diamond with a
C3v symmetry consists of a nitrogen atom associated with a
vacancy in an adjacent lattice site. For the negatively charged
NV center with electron spin S = 1, the ground state is a
spin-triplet state 3A, with a zero-field splitting D = 2.87 GHz
[1] between spin sublevels ms = 0 and ms = ±1 due to the
electronic spin-spin interaction. In this article, we consider a
first-shell 13C nuclear spin coupled with the electronic spin of
an NV center. As a result, there is a strong hyperfine coupling
A‖ = 130 MHz [41] between the nuclear and electronic spins.
Figure 1(b) shows the energy-level diagram of the ground-state
hyperfine structure associated with a nearby 13C nuclear spin.
We label the states of this bipartite system as |ms,↑〉 and
|ms,↓〉, where |↑〉 and |↓〉 are the nuclear-spin states.

We consider a weak static magnetic field Bz < 673 G
along the NV principle axis by a permanent magnet. The total
Hamiltonian of the electron-spin ground state and a nearby 13C
nuclear spin reads [31]

HF = DS2
z + γeBzSz + γcBzIz + A‖SzIz

+A⊥(SxIx + SyIy). (1)

Here, Sα and Iα (α = x,y,z) are respectively the electron- and
nuclear-spin operators. The first term stands for the zero-field
splitting of the electronic ground state. The following two
terms, γeBzSz and γcBzIz, are the electron- and nuclear-spin
Zeeman energy splittings with the electronic gyromagnetic
ratio γe = −1.76×1011 rad s−1 T−1 [42] and the nuclear
gyromagnetic ratio γc = 6.73×107 rad s−1 T−1 [23]. The
last two terms describe the hyperfine interaction between
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FIG. 1. Schematic of polarizing a 13C nuclear spin in the vicinity
of an NV center. (a) The structure of an NV center. (b) Energy levels of
the electron and 13C nuclear spins under the hyperfine interaction. Two
pulses are simultaneously applied to induce the transitions of |0,↑〉 ↔
|−,↑〉 and |−,↑〉 ↔ |−,↓〉 with respectively Rabi frequencies �1 and
�2, and one-photon detuning δ, and two-photon detuning �.

the electron spin and the 13C nuclear spin, where A‖ and
A⊥ are the longitudinal and transverse hyperfine interactions,
respectively.

Due to the weak magnetic field strength, the relevant level
spacings are much larger than the transverse hyperfine inter-
action, i.e., |D − γeBz + γcBz − 1

2A‖| � A⊥/
√

2. Therefore,
the SxIx and SyIy terms of the hyperfine interaction are totally
negligible. In this case, the secular approximation is valid
[25,35,43,44] and only the longitudinal hyperfine interaction
is taken into account. In the absence of time-varying magnetic
fields, the Hamiltonian can be approximated as

HS
F 
 DS2

z + γeBzSz + γcBzIz + A‖SzIz. (2)

III. POLARIZING BY DARK STATE

As shown in Fig. 1(b), the transition |0,↑〉↔ |−,↑〉 is
addressed via a microwave pulse with Rabi frequency �1

and driving frequency ωA = D − γeBz − δ − A‖/2, while the
transition |−,↑〉 ↔ |−,↓〉 is driven via a radio-frequency
pulse with Rabi frequency �2 and driving frequency ωB =
A‖ − γcBz + δ − �. Thus, in the presence of the two pulses
the whole Hamiltonian of the system reads HM = HF + HI ,
where the interaction Hamiltonian after a rotating-wave ap-
proximation that eliminates the fast-oscillating terms is

HI = �1e
iωAt |0,↑〉〈−,↑| + �2e

iωB t |−,↑〉〈−,↓| + H.c. (3)

Hereafter, we demonstrate polarizing the nuclear spin by
the dark state. The nuclear and electronic spins are initially in
a product state [26,29,31]. In each cycle there are two steps.
First of all, the system evolves under the influence of the
simultaneous microwave and radio-frequency pulses. In the
second step, the electronic and nuclear spins are decoupled
by a 532-nm optical pumping which reinitializes the electron
spin in its ground state |0〉, while the state of the nuclear spin
is unchanged, i.e., ρ(t) → ρe(0) ⊗ Treρ(t) [26,29]. Then, the
above cycle is repeated until a high polarization of the nuclear
spin is reached.

The optical excitation with a 532-nm laser pulse leads to a
strong spin polarization into the |0〉 sublevel of the ground state
[1], which derives from spin-selective nonradiative intersystem
crossing to a metastable state between the ground and excited
triple states. In this sense, it is reasonable to choose the
electronic initial state ρe(0) =|0〉〈0|. Due to the small nuclear
Zeeman energy splitting with respect to the thermal energy,
the nuclear spin is in the maximum mixed state ρc(0) =
(|↑〉〈↑|+|↓〉〈↓|)/2. When the electronic spin is populated in
ms = 0, the longitudinal hyperfine interaction vanishes. Thus,
the initial state of the total system is given by

ρ(0) = ρe(0) ⊗ ρc(0). (4)

Then, the microwave pulse and the radio-frequency pulse
drive the transitions |0,↑〉 ↔ |−,↑〉 and |−,↑〉 ↔ |−,↓〉,
respectively, with the different detunings δ and �. The to-
tal system evolves under the Hamiltonian HM = HF + HI

for a time interval t . Since the total Hamiltonian HM is
time dependent, it is transformed to the rotating frame de-
fined by |Ψ (t)R〉= U †(t)|Ψ (t)〉 with U (t) = exp[−i(HS

F −
δ|−,↑〉〈−,↑| − �|−,↓〉〈−,↓|)t]. Here, |Ψ (t)R〉 satisfies the
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Schrödinger equation in the rotating frame with the effective
Hamiltonian

HR
M ≡ U †(HS

F + HI

)
U + iU̇ †U

= δ|−,↑〉〈−,↑| + �|−,↓〉〈−,↓|
+�1|0,↑〉〈−,↑| + �2|−,↑〉〈−,↓| + H.c. (5)

Generally speaking, the quantum dynamics of the electron
and nuclear spins is subject to the noise, which can be described
by the master equation

∂tρ = −i[HM,ρ] + Lρ, (6)

where Lρ = κ(| − 〉〈−|ρ| − 〉〈−| − 1
2 {| − 〉〈−|,ρ}) describes

the decoherence induced by the bath with κ being the deco-
herence rate, and {·,ρ} the anticommutator. Because in many
cases T1 is much longer than T2 = κ−1 [45–47], without loss
of generality, we only take the pure-dephasing process into
consideration in our simulation.

When the decoherence is sufficiently slow as compared to
the coherent process described by HM , the quantum jump
term | − 〉〈−|ρ| − 〉〈−| can be neglected. Thus, the total
quantum dynamics including the decoherence can be simulated
by the Schrödinger equation with a non-Hermitian Hamil-
tonian [37,48]

H = HR
M − i

2
κ|−〉〈−|. (7)

Because we apply two selective-resonance drivings to the
NV center, the state |0,↓〉 is sufficiently independent from the
other three states. Therefore, hereafter we can separately con-
sider the quantum dynamics of an initial state |ψ(0)〉 = |0,↑〉
driven by two driving pulses. As presented in the Appendix, at
any time the state of the system reads

|ψ(t)〉 =
3∑

j=1

Nje
−ixj t∏

k �=j (xj − xk)
|Ej 〉, (8)

where the three eigenstates of H are

|Ej 〉 = 1

Nj

{[
(xj − ω1)(xj − ω2) − �2

2

]|0,↑〉

+�1(xj − ω2)|−,↑〉 + �1�2|−,↓〉}, (9)

wherein Nj ’s are the normalization constants, xj ’s are the
eigenenergies, ω1 = δ − iκ/2, and ω2 = � − iκ/2. We em-
ploy two strong drivings to polarize the nuclear spin, i.e.,
ω1,ω2 � �1,�2. When the two-photon transition is resonant,
i.e., � = 0,

|E1〉 
 �2

N1
(−�2|0,↑〉 + �1|−,↓〉) (10)

is the dark state because it lacks the component of the lossy
intermediate state |−,↑〉, while

|E2〉 
 �1

N2
(�1|0,↑〉 + �|−,↑〉 + �2|−,↓〉), (11)

|E3〉 
 �1

N3
(�1|0,↑〉 − �|−,↑〉 + �2|−,↓〉), (12)
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FIG. 2. The population dynamics of initial state |0,↑〉 (red),
intermediate state |−,↑〉 (green), and target state |−,↓〉 (black) by the
Schrödinger equation (solid lines) with a non-Hermitian Hamiltonian
expressed by Eq. (7) and the exact master equation with the exact
Hamiltonian HM (dashed lines). The population dynamics are drawn
with A‖ = 130 MHz [49], δ = � = 0, �1 = �2 = 13 MHz, and
κ = 1/58 MHz [50].

are the bright states suffering from relaxation. In this case, the
state of the system is simplified as

|ψ(t)〉 = �1√
2�

e
−i 1

2 (ω1+ �2
2

�2 ω2)t (e−i�t |E2〉 + ei�t |E3〉)

−�2

�
e
−i

�2
1

�2 ω2t |E1〉 (13)

with

� =
√

�2
1 + �2

2. (14)

By solving the Schrödinger equation with a non-Hermitian
Hamiltonian expressed by Eq. (7), we numerically simulate
the population dynamics of all three states for the resonance
case, i.e., δ = � = 0, as shown by the solid lines in Fig. 2. In
one cycle, almost 100% population in |0,↑〉 can be coherently
transferred to |−,↓〉 even in the presence of noise. In order to
derive the non-Hermitian Hamiltonian, several approximations
have been utilized, i.e., dropping the quantum jump terms in the
master equation, ignoring the transverse hyperfine interactions,
and disregarding transitions due to the large-detuning condi-
tion. In order to validate these approximations, we also present
the numerical simulation with the dashed lines in Fig. 2 by
the exact master equation without the above approximations.
Obviously, the differences between the two approaches are
relatively small. Thus, it is valid to describe theoretically
the quantum dynamics of the nuclear-spin polarization in the
presence of noise via solving the Schrödinger equation with a
non-Hermitian Hamiltonian.

By means of the Schrödinger equation with a non-Hermitian
Hamiltonian, we can effectively analyze the effects of parame-
ters on the nuclear-spin polarization and obtain a set of optimal
parameters to guide the experiment for different conditions of
nuclear spins. In the previous experimental realizations (cf.
Refs. [25,26,31,35,36]), two π pulses are sequentially applied
to swap the electron-spin polarization into the nuclear-spin
polarization. Compared to this separate-pulse method [31],
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FIG. 3. Comparison between the probabilities of the nuclear spin
in the |↓〉 vs time by applying two simultaneous pulses (black line)
and two separate pulses (red line). In the simultaneous case, �1 =
�2 = 13 MHz, while �1 = �2 = 4.3 MHz [31] in the separate case.
Other parameters are the same in both cases, i.e., A‖ = 130 MHz [49],
δ = � = 0, and κ = 1/58 MHz [50]. The optimal operation times are
labeled by the blue arrows.

the biggest difference is that we simultaneously apply two
balanced pulses, and the strengths of pulses in our approach
have an upper limit which is determined by the selective-
excitation condition (see Sec. IV). Meanwhile, it implies that
the operation time to polarize the nuclear spin is smaller than
theirs, as presented in Fig. 3, i.e., 0.16 μs vs 0.7 μs. Second,
our proposal makes full use of the dark state to avoid the
noise suffered by the intermediate state; thus, the nuclear-spin
polarization in our proposal is much higher than theirs as shown
in Fig. 3 with the first peaks (i.e., 0.94 vs 0.7) indicated by
the blue arrows via the different pulse ways. Therefore, the
polarization for our proposal can achieve an optimal level by
choosing optimal parameters to increase the polarization and
reduce the swapping time.

The swapping of electron-spin polarization into nuclear-
spin polarization is intrinsically a quantum-state transfer pro-
cess from |0,↑〉 to |−,↓〉 via a lossy state |−,↑〉. Intuitively,
the fidelity of state transfer is subject to the noise strength. In
Fig. 4(a), we explore the noise’s effect on the fidelity of nuclear
spin in the state |↓〉 with κ = 1 MHz for different nuclear spins,
i.e., different hyperfine interactions. For a nuclear spin in the

first shell, the probability in |↓〉 vs time manifests a damped
vibration due to couplings to the environment. The maximum
fidelity is more than 0.9 around the first peak at t = π/

√
2�1 


0.17 μs as a longer pulse duration yields more loss. When a
nuclear spin in the second shell is to be polarized, the maximum
fidelity is about 0.85, less than that for the nuclear spin in the
first shell as the Rabi frequency is smaller due to a weaker
hyperfine interaction. If we choose a nuclear spin even farther
apart from the NV center, e.g., A‖ = −7.5 MHz, the maximum
fidelity observably declines to 0.79. Because Rabi frequencies
are limited by the large-detuning condition, the descending of
maximum fidelity along with reducing of hyperfine interaction
results from the increasing pulse duration. When the pure-
dephasing rate κ is reduced from 1 to 1/5.8 MHz, e.g., Fig. 4(a)
vs Fig. 4(b), an anomalous phenomenon occurs: the maximum
fidelity achieved for the nuclear spin in the second shell is a
little bit larger than that for the nuclear spin in the first shell.
That is because the transverse hyperfine interaction provides
an additional pathway for the intermediate state |−,↑〉 to
the nuclear-spin-polarized state |0,↓〉. If the noise strength is
further suppressed to κ = 1/58 MHz, e.g., Fig. 4(c), the first
peak for a nuclear spin with A‖ = −7.5 MHz rises although
more time is required for the evolution.

In the above investigations, we assume two-photon reso-
nance to utilize the dark state to improve the transfer fidelity.
In order to verify the constructive effect of dark state on the
transfer, we plot the fidelity vs different two-photon detunings
� in Fig. 5. As expected, the fidelity decreases along with the
increase of �, as a larger � implies more component of |E1〉 in
the lossy intermediate state. In Fig. 5, the dependence of fidelity
on the one-photon detuning δ is also explored. Similarly, the
fidelity reduces monotonically as δ increases. In addition to
the respective dynamical phases ±�t , which can be canceled
by setting �t = π , δt characterizes the synchronism of the
two bright states with respect to the dark state. Because, in
both cases, the maximum fidelity is achieved at the vanishing
detuning, � = δ = 0 has been suggested for the optimal state
transfer.

Generally speaking, in a practical experiment, there would
be a small fluctuation in pulse amplitude. This imperfection
leads to additional noise and obstacles for the implementation
of quantum information processing, which can be overcome
by dynamical decoupling with concatenated continuous driv-
ing and phase modulation [51,52]. Hereafter, by numerical
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FIG. 4. The fidelity of nuclear spin in |↓〉 vs A‖ = A⊥ for different noise strength: (a) κ = 1 MHz, (b) κ = 1/5.8 MHz, and (c) κ = 1/58 MHz
[50]. The solid red line is A‖ = 130 MHz [49], the dashed blue line is A‖ = 14.8 MHz [49], and the dotted green line is A‖ = −7.5 MHz [49].
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FIG. 5. The transfer fidelity P|↓〉 vs the one-photon (two-photon)
detuning δ (�) for the first-shell 13C. The dependence on � is shown
by the red curve with δ = 0. The dependence on δ is shown by the
dashed blue curve with � = 0. Other parameters are the same as
in Fig. 2.

simulations, we demonstrate that our scheme is robust against
the small fluctuation in the pulse amplitude. As shown in
Fig. 6, the population dynamics with and without 1% amplitude
fluctuation are compared. Since two species of curves almost
coincide with each other, the maximum fidelity is hardly
changed by the imperfect pulse. However, as the fluctuation
increases, the noise in the pulse amplitude will inevitably
reduce the fidelity, which is not shown here. In that case, the
schemes proposed in Refs. [51,52] might play a role against
the fluctuation in the pulse amplitude.

IV. DISCUSSION AND SUMMARY

The initialization of the nuclear spin is critical to the subse-
quent quantum information storage and processing. Facilitated
by the strong hyperfine interaction with the electron spin, the
nuclear spin in the vicinity of an NV center can be polarized
by the swapping of the electron-spin polarization. And the
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FIG. 6. The effect of pulse amplitude fluctuation on the popula-
tion dynamics for the first-shell 13C: dash-dotted red curve for |0,↑〉,
dotted blue curve for |−,↑〉, and dashed green curve for |−,↓〉. The
population dynamics without 1% amplitude fluctuation is shown by
the solid curves. Other parameters are the same as in Fig. 2.
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FIG. 7. The influence of magnetic field strength on the transfer
fidelity for the first-shell 13C: Red curves with stars for B = 0 G, black
curves with circles for B = 200 G, and green curves with squares
for B = 1500 G. The fidelity dynamics with (without) transverse
hyperfine interaction is shown by the lower solid (upper dashed)
curves. Other parameters are the same as in Fig. 2.

swapping process is intrinsically a quantum-state process via
a lossy intermediate state. In this paper, we propose to polarize
the 13C nuclear spin coupled to the electron spin of an NV
center through the dark state. Our simulation demonstrates
that the nuclear-spin polarization can reach about 97% for the
next-next-nearest-neighbor site in the presence of small noises.
In the following, we discuss the feasibility in the experiment
and advantages of this proposal.

In theory, in the case of stronger Rabi frequencies �1 and
�2, it takes a shorter time t for the nuclear spin to reach
the maximum polarization. In our scheme, the magnitudes of
�1 and �2 are limited by the selective-excitation condition.
The driving frequency ωA is set to be in close resonance
with the transition |0,↑〉�|−,↑〉, i.e., �1 � δ. On the other
hand, the level spacing between |0,↓〉 and |−,↓〉 is D −
γeBz + A‖/2. To selectively address the transition between
|0,↑〉 and |−,↑〉, the Rabi frequency �1 must satisfy the
large-detuning condition, i.e., �1 � δ + A‖. In the same way,
we can deduce that δ − � � �2 � A‖ + δ − � − 2γcBz. To
be specific, because the hyperfine interaction between the
electronic spin and the 13C nuclear spin in the first shell A‖ is
130 MHz, the Rabi frequencies can be no more than 13 MHz.
Furthermore, in order to validate the secular approximation,
the magnetic field strength and the hyperfine interaction should
fulfill the requirement |D − γeBz + γcBz − 1

2A‖| � A⊥/
√

2.
In other words, Bz � 673 G or Bz � 1330 G for the case with
a 13C nuclear spin in the first shell. In Fig. 7, the dynamics of
fidelity is plotted vs different B. In order to verify the secular
approximation, the dynamics with and without the transverse
hyperfine interaction are compared. Although in all cases the
curves without A⊥ are slightly higher than those with A⊥, the
maximum fidelities are generally larger than 0.92. Therefore,
our scheme is valid for a broad range of magnetic field, in
contrast to the schemes based on the ground (excited) state
level anticrossing, which are sensitive to both the magnitude
and inclination of the magnetic field.

Compared with Refs. [27,34], our scheme does not require
a specific magnetic field to result in a level anticrossing in the

042313-5



WANG, QIU, CHU, ZHANG, CAI, AI, AND DENG PHYSICAL REVIEW A 97, 042313 (2018)

ground or excited states. Besides, our proposal is not sensitive
to the inclination of applied magnetic field. In Refs. [26,31],
the initialization of nuclear spin with fidelity 85% is realized by
mapping the electronic spin polarization into the nuclear spin
state with a weak hyperfine interaction after ten repetitions.
However, our proposal can reach about 97% in a weaker
hyperfine interaction with one cycle which is much higher than
theirs. In other words, to achieve the same effect, the repetitions
of our proposal could be much fewer than ten cycles. And, it
is more convenient than the single-shot readout approach in
Refs. [28,29]. Furthermore, the effect of pure dephasing in our
method can be further suppressed to reach an optimal result by
the dynamical decoupling techniques [53–56].
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APPENDIX: QUANTUM DYNAMICS AND DARK STATE

In the basis of {|0,↑〉,|−,↑〉,|−,↓〉}, the Hamiltonian is
written in the matrix form as

H =

⎛⎜⎝ 0 �1 0

�1 ω1 �2

0 �2 ω2

⎞⎟⎠, (A1)

where

ω1 = δ − iκ/2, (A2)

ω2 = � − iκ/2. (A3)

We consider the time evolution of an initial state |ψ(0)〉 =
|0,↑〉. At any time, the state reads

|ψ(t)〉 = u(t)|0,↑〉 + v(t)|−,↑〉 + w(t)|−,↓〉. (A4)

According to the Schrödinger equation, we obtain a set of
differential equations for the probability amplitudes as

iu̇(t) = �1v(t), (A5a)

iv̇(t) = �1u(t) + ω1v(t) + �2w(t), (A5b)

˙iw(t) = �2v(t) + ω2w(t), (A5c)

with the initial condition u(0) = 1, v(0) = w(0) = 0. By
Laplace transformation, α̃(p) = ∫∞

0 α(t)e−ptdt (α = u,v,w),
we obtain

i[pũ(p) − 1] = �1ṽ(p), (A6a)

ipṽ(p) = �1ũ(p) + ω1ṽ(p) + �2w̃(p), (A6b)

ipw̃(p) = �2ṽ(p) + ω2w̃(p), (A6c)

or equivalently in the matrix form⎡⎢⎣−ip �1 0

�1 ω1 − ip �2

0 �2 ω2 − ip

⎤⎥⎦
⎡⎢⎣ ũ(p)

ṽ(p)

w̃(p)

⎤⎥⎦ =

⎡⎢⎣−i

0

0

⎤⎥⎦. (A7)

We define

detD ≡

∣∣∣∣∣∣∣
−ip �1 0

�1 ω1 − ip �2

0 �2 ω2 − ip

∣∣∣∣∣∣∣
= (x1 − ip)(x2 − ip)(x3 − ip), (A8a)

detD1 ≡

∣∣∣∣∣∣∣
−i �1 0

0 ω1 − ip �2

0 �2 ω2 − ip

∣∣∣∣∣∣∣
= −i(ω1 − ip)(ω2 − ip) − (−i)�2

2, (A8b)

detD2 ≡

∣∣∣∣∣∣∣
−ip −i 0

�1 0 �2

0 0 ω2 − ip

∣∣∣∣∣∣∣ = i�1(ω2 − ip), (A8c)

detD3 ≡

∣∣∣∣∣∣∣
−ip �1 −i

�1 ω1 − ip 0

0 �2 0

∣∣∣∣∣∣∣ = −i�1�2, (A8d)

where xj ’s are the eigenenergies of Hamiltonian (A1), which
are determined later. And thus we have

ũ(p) = detD1

detD
= −i

(ω1 − ip)(ω2 − ip) − �2
2

(x1 − ip)(x2 − ip)(x3 − ip)
, (A9a)

ṽ(p) = detD2

detD
= −i

�1(ip − ω2)

(x1 − ip)(x2 − ip)(x3 − ip)
, (A9b)

w̃(p) = detD3

detD
= −i

�1�2

(x1 − ip)(x2 − ip)(x3 − ip)
. (A9c)

Furthermore, by inverse Laplace transformation, α(t) =
(2πi)−1

∫ σ+i∞
σ+i∞ α̃(p)eptdp (α = u,v,w), we obtain the prob-

ability amplitudes as

u(t) =
3∑

j=1

(xj − ω1)(xj − ω2) − �2
2∏

k �=j (xj − xk)
e−ixj t , (A10a)

v(t) =
3∑

j=1

�1(xj − ω2)∏
k �=j (xj − xk)

e−ixj t , (A10b)

w(t) =
3∑

j=1

�1�2∏
k �=j (xj − xk)

e−ixj t . (A10c)
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According to the Schrödinger equation, the eigenenergies
xj ’s are the solutions to the following equation:

x[x2 − (ω1 + ω2)x + ω1ω2 − �2] + �2
1ω2 = 0, (A11)

where

�2 = �2
1 + �2

2. (A12)

When ω2 is small, assuming

xj 
 x0j + Ajω2, (A13)

we can obtain the approximate solutions by the perturbation
theory. The zero-order terms are determined by

x0j

[
x2

0j − (ω1 + ω2)x0j + ω1ω2 − �2
] = 0, (A14)

where

x01 = 0, (A15a)

x02 = ω+, (A15b)

x03 = ω−, (A15c)

ω± = 1
2 [(ω1 + ω2) ±

√
(ω1 − ω2)2 + 4�2]. (A15d)

Therefore, Eq. (A11) can be rewritten as

x(x − ω+)(x − ω−) + �2
1ω2 = 0. (A16)

By inserting x1 = A1ω2 into Eq. (A16), to the zeroth order of
ω2, we obtain

A1 = − �2
1

ω+ω−

 �2

1

�2
. (A17)

By inserting x2 = ω+ + A2ω2 into Eq. (A16), to the zeroth
order of ω2, we obtain

A2 = − �2
1

ω+(ω+ − ω−)

 − �2

1

2�2
. (A18)

By inserting x3 = ω− + A3ω2 into Eq. (A16), to the zeroth
order of ω2, we obtain

A3 = �2
1

ω−(ω+ − ω−)

 − �2

1

2�2
. (A19)

The eigenstates are

|Ei〉= 1

Ni

{[
(xi − ω1)(xi − ω2) − �2

2

]|0,↑〉

+�1(xi − ω2)|−,↑〉 + �1�2|−,↓〉}, (A20)

where the normalization constants are given by

N2
i = ∣∣(xi − ω1)(xi − ω2) − �2

2

∣∣2 + |�1(xi − ω2)|2

+ |�1�2|2. (A21)

In the eigenbasis, the time evolution of the initial state
|ψ(0)〉 = |0,↑〉 is

|ψ(t)〉 =
3∑

j=1

Nje
−ixj t∏

k �=j (xj − xk)
|Ej 〉. (A22)

When ω1,ω2 � �1,�2, to the first order of ωj ’s, we have

ω± = 1

2

{
(ω1 + ω2) ±

√
4�2

[
1 + (ω1 − ω2)2

4�2

]}


 1

2

{
(ω1 + ω2) ± 2�

[
1 + (ω1 − ω2)2

4�2

]}

 1

2
[(ω1 + ω2) ± 2�]. (A23)

The eigenenergies are approximated to the first order of ωj ’s
as

x1 
 �2
1

1
4 [4�2 − (ω1 + ω2)2]

ω2 
 �2
1

�2
ω2, (A24a)

x2 
 1

2
[(ω1 + ω2) + 2�] − �2

1

[(ω1 + ω2) + 2�]�
ω2


 � + 1

2

(
ω1 + �2

2

�2
ω2

)
, (A24b)

x3 
 1

2
[(ω1 + ω2) − 2�] + �2

1

[(ω1 + ω2) − 2�]�
ω2


 −� + 1

2

(
ω1 + �2

2

�2
ω2

)
. (A24c)

Furthermore, the probability amplitudes can be obtained with the coefficients to the zeroth order of ωj ’s and the phases to the
first order of ωj ’s as

u(t) = (x1 − ω1)(x1 − ω2) − �2
2

(x1 − x2)(x1 − x3)
e−ix1t + (x2 − ω1)(x2 − ω2) − �2

2

(x2 − x1)(x2 − x3)
e−ix2t + (x3 − ω1)(x3 − ω2) − �2

2

(x3 − x1)(x3 − x2)
e−ix3t

= (0 − ω1)(0 − ω2) − �2
2

(0 − ω+)(0 − ω−)
e
−i

�2
1

�2 ω2t + (ω+ − ω1)(ω+ − ω2) − �2
2

(ω+ − 0)(ω+ − ω−)
e
−i

[
�+ 1

2

(
ω1+ �2

2
�2 ω2

)]
t

+ (ω− − ω1)(ω− − ω2) − �2
2

(ω− − 0)(ω− − ω+)
e
−i

[
−�+ 1

2

(
ω1+ �2

2
�2 ω2

)]
t

= �2
2

�2
e
−i

�2
1

�2 ω2t + �2 − �2
2

2�2
e
−i

[
�+ 1

2

(
ω1+ �2

2
�2 ω2

)]
t + �2 − �2

2

2�2
e
−i

[
−�+ 1

2

(
ω1+ �2

2
�2 ω2

)]
t

= �2
2

�2
e
−i

�2
1

�2 ω2t + �2
1

�2
e
−i 1

2

(
ω1+ �2

2
�2 ω2

)
t cos �t, (A25)
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v(t) = �1(x1 − ω2)

(x1 − x2)(x1 − x3)
e−ix1t + �1(x2 − ω2)

(x2 − x1)(x2 − x3)
e−ix2t + �1(x3 − ω2)

(x3 − x1)(x3 − x2)
e−ix3t

= �1(0 − ω2)

(0 − �)(0 + �)
e
−i

�2
1

�2 ω2t + �1(� − ω2)

(� − 0)(� + �)
e
−i

[
�+ 1

2

(
ω1+ �2

2
�2 ω2

)]
t + �1(−� − ω2)

(−� − 0)(−� − �)
e
−i

[
−�+ 1

2

(
ω1+ �2

2
�2 ω2

)]
t

= −i
�1

�
e
−i 1

2

(
ω1+ �2

2
�2 ω2

)
t sin �t, (A26)

w(t) 
 �1�2

⎧⎨⎩ e
−i

�2
1

�2 ω2t

(0 − ω+)(0 − ω−)
+ e

−i

[
�+ 1

2

(
ω1+ �2

2
�2 ω2

)]
t

(ω+ − 0)(ω+ − ω−)
+ e

−i

[
−�+ 1

2

(
ω1+ �2

2
�2 ω2

)]
t

(ω− − 0)(ω− − ω+)

⎫⎬⎭

 −�1�2

�2
e
−i

�2
1

�2 ω2t + �1�2

2�2
e
−i

[
�+ 1

2

(
ω1+ �2

2
�2 ω2

)]
t + �1�2

2�2
e
−i

[
−�+ 1

2

(
ω1+ �2

2
�2 ω2

)]
t


 −�1�2

�2

[
e
−i

�2
1

�2 ω2t − e
−i 1

2

(
ω1+ �2

2
�2 ω2

)
t cos �t

]
. (A27)

When �t = π ,

w(t) = −�1�2

�2

[
e
−i

�2
1

�2
π
�

ω2 + e
−i 1

2

(
ω1+ �2

2
�2 ω2

)
π
�

] = −�1�2

�2

{
e
−i

π�2
1

�3 (�−i κ
2 ) + e

−i 1
2

[(
δ+ �2

2
�2 �

)
−i

(
1+ �2

2
�2

)
κ
2

]
π
�

}
. (A28)

In order to obtain nearly complete polarization, the two following conditions should be fulfilled, i.e.,

e
−i

π�2
1

�3 � = e
−i 1

2

(
δ+ �2

2
�2 �

)
π
� , (A29a)

1 
 e
− π�2

1
2�3 κ

,e
− �2+�2

2
4�3 πκ

, (A29b)

or equivalently

δ = 2�2
1 − �2

2

�2
�, (A30a)

κ � �3

π�2
1

,
4�3

π
(
�2 + �2

2

) . (A30b)

For �1 = �2, we have

δ = 1
2�, (A31a)

� � 3
8πκ. (A31b)

When the above condition is fulfilled, to the first order of κ , the polarization deviates from unity as

1 − |ω(t)|2 
 1 − �2
1�

2
2

�4

{
e
− π�2

1
�3 κ + e

−
(

1+ �2
2

�2

)
π

2�
κ + 2Re

[
e
−i

π�2
1

�3 (�−i κ
2 )

e
i 1

2

[(
δ+ �2

2
�2 �

)
+i

(
1+ �2

2
�2

)
κ
2

]
π
�

]}
= 1 − �2

1�
2
2

�4

{
e
− π�2

1
�3 κ + e

−
(

1+ �2
2

�2

)
π

2�
κ + 2 cos

[
−π�2

1

�3
� + 1

2

(
δ + �2

2

�2
�

)
π

�

]
e
− π�2

1
2�3 κ

e
− 1

4

(
1+ �2

2
�2

)
π
�

κ

}


 1 − �2
1�

2
2

�4

{
1 − π�2

1

�3
κ + 1 −

(
1 + �2

2

�2

)
π

2�
κ + 2

[
1 − π�2

1

2�3
κ − 1

2

(
1 + �2

2

�2

)
π

2�
κ

]}

= 1 − �2
1�

2
2

�4

[
4 − 2

π�2
1

�3
κ − 2

(
1 + �2

2

�2

)
π

2�
κ

]
= 1 −

(
1 − π

4�
κ − 3π

8�
κ

)
= 5π

8�
κ. (A32)

When both detunings vanish, i.e., � = δ = 0, to the zeroth order of ωj ’s, the eigenstates are

|E1〉 
 1

Ni

{[
(0 − ω1)(0 − ω2) − �2

2

]|0,↑〉 + �1(0 − ω2)|−,↑〉 + �1�2|−,↓〉} 
 �2

N1
(−�2|0,↑〉 + �1|−,↓〉), (A33a)

|E2〉 
 1

N2

{[
(� − ω1)(� − ω2) − �2

2

]|0,↑〉 + �1(� − ω2)|−,↑〉 + �1�2|−,↓〉} 
 �1

N2
(�1|0,↑〉 + �|−,↑〉 + �2|−,↓〉),

(A33b)
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|E3〉 
 1

N3

{[
(−� − ω1)(−� − ω2) − �2

2

]|0,↑〉 + �1(−� − ω2)|−,↑〉 + �1�2|−,↓〉}

 �1

N3
(�1|0,↑〉 − �|−,↑〉 + �2|−,↓〉), (A33c)

where the normalization constants are

N1 = �2�, (A34a)

N2 = N3 =
√

2�1�. (A34b)

Here |E1〉 is the dark state because the probability in the lossy intermediate state |−,↑〉 vanishes, while the other two are
the bright states. The intermediate state |−,↑〉 suffers from decoherence, and thus more probability in |−,↑〉 results in less
transfer fidelity. Because the probability amplitude of |E1〉 in |−,↑〉 is proportional to x1 − ω2 = �2

2(� − iκ/2)/�2 according
to Eqs. (A3), (A20), and (A24a), the dark state does not exist unless the two-photon transition is resonant, i.e., � = 0. Notice
that all expanding coefficients in the bright states are the same except there is a sign difference in the expanding coefficients of
|−,↑〉.

In the eigenbasis, the time evolution of the initial state |ψ(0)〉 = |0,↑〉 is

|ψ(t)〉 = �2�e
−i

�2
1

�2 ω2t

(0 − �)(0 + �)
|E1〉 +

√
2�1�e

−i

[
�+ 1

2

(
ω1+ �2

2
�2 ω2

)]
t

(� − 0)(� + �)
|E2〉 +

√
2�1�e

−i

[
−�+ 1

2

(
ω1+ �2

2
�2 ω2

)]
t

(−� − 0)(−� − �)
|E3〉

= −�2e
−i

�2
1

�2 ω2t

�
|E1〉 +

√
2�1e

−i 1
2

(
ω1+ �2

2
�2 ω2

)
t

2�
(e−i�t |E2〉 + ei�t |E3〉). (A35)

Because there is a sign difference in the expanding coefficients of |−,↑〉 in |E2〉 and |E3〉, the probability in |−,↑〉 vanishes as
long as �t = nπ with n being an integer. To summarize, we utilize the dark state and quantum interference to achieve nearly
complete polarization of the nuclear spin.
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