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Complete nondestructive 
analysis of two-photon six-qubit 
hyperentangled Bell states assisted 
by cross-Kerr nonlinearity
Qian Liu, Guan-Yu Wang, Qing Ai, Mei Zhang & Fu-Guo Deng

Hyperentanglement, the entanglement in several degrees of freedom (DOFs) of a quantum system, 
has attracted much attention as it can be used to increase both the channel capacity of quantum 
communication and its security largely. Here, we present the first scheme to completely distinguish 
the hyperentangled Bell states of two-photon systems in three DOFs with the help of cross-Kerr 
nonlinearity without destruction, including two longitudinal momentum DOFs and the polarization 
DOF. We use cross-Kerr nonlinearity to construct quantum nondemolition detectors which can be used 
to make a parity-check measurement and analyze Bell states of two-photon systems in different DOFs. 
Our complete scheme for two-photon six-qubit hyperentangled Bell-state analysis may be useful for 
the practical applications in quantum information, especially in long-distance high-capacity quantum 
communication.

Quantum entanglement plays an important role in quantum information processing. It is the key resource for 
quantum communication tasks, such as quantum teleportation1, quantum swapping2, quantum dense coding3,4, 
quantum key distribution5,6, quantum secret sharing7, quantum secure direct communication8–12, and so on. 
Recently, hyperentanglement, the entanglement in multiple degrees of freedom of a quantum system13–15, has 
attracted much attention. It can be used to complete the deterministic entanglement purification for nonlocal 
photonic systems in the polarization degree of freedom (DOF)16–20, which reduces largely the resource consumed 
for quantum repeaters. As it is impossible to deterministically distinguish the four Bell states in polarization 
with only linear optical elements, hyperentanglement can also used to assist the complete Bell-state analysis 
(BSA)16,17. For instance, Kwiat and Weinfurter21 proposed a BSA scheme using photons entangled in polarization 
and momentum (spatial mode) in 1998. In 2003, Walborn et al.22 presented a simple linear-optical scheme for 
the complete Bell-state analysis of photons with hyperentanglement in both polarization and momentum. The 
experiments of a complete BSA with polarization-time-bin hyperentanglement23 and polarization-momentum 
hyperentanglement24 have also been reported in succession. For all the linear-optical BSA protocols mentioned 
above, they use one DOF as an ancillary to accomplish the complete BSA in the other DOF, rather than distin-
guish all the hyperentangled Bell states themselves. In 2007, Wei et al.25 pointed out that 7 states in the group of 
16 orthogonal hyperentangled Bell states can be distinguished with only linear optics. The general theoretical 
explanation has been presented by Pisenti’s group26 in 2011.

Hyperentanglement of photon systems can increase both the channel capacity of long-distance quantum 
communication and its security. In 2008, Barreiro et al.27 beat the channel capacity limit for linear photonic 
superdense coding with polarization-orbital-angular-momentum hyperentanglement. In 2012, Wang, Song, 
and Long28 proposed an efficient quantum repeater protocol for long-distance quantum communication with 
hyperentanglement. In 2013, Ren, Du, and Deng29 gave the first hyperentanglement concentration protocol 
(hyper-ECP) for two-photon four-qubit systems with linear optics. In the same year, Ren and Deng30 proposed 
the original hyperentanglement purification protocol (HEPP) for polarization-spatial hyperentangled states 
assisted by diamond nitrogen-vacancy centers inside photonic crystal cavities. In 2014, Ren, Du, and Deng31 gave 
a two-step HEPP for polarization-spatial hyperentangled states with the quantum-state-joining method, and it 
has a far higher efficiency. Ren and Long32 proposed a general hyper-ECP for photon systems assisted by quantum 
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dot spins inside optical microcavities. Li and Ghose33 presented a hyper-ECP for multipartite entanglement via 
linear optics. Some other interesting protocols for hyperentanglement concentration and hyperentanglement 
purification34–36 were presented in 2015.

In fact, in long-distance high-capacity quantum communication, the complete analysis for all the orthogonal 
hyperentangled Bell states of photon systems in multiple DOFs is necessary. The 16 orthogonal hyperentangled 
Bell states of two-photon systems in two DOFs can be distinguished completely if nonlinear optics is introduced. 
In 2010, Sheng et al.37 gave the first scheme for the complete hyperentangled-Bell-state analysis (HBSA) for quan-
tum communication with the help of cross-Kerr nonlinearity. In 2012, Ren et al.38 proposed another complete 
HBSA scheme for photon systems in both the polarization and the spatial-mode DOFs with the help of giant 
nonlinear optics in one-sided quantum-dot-cavity systems. Using double-sided quantum-dot-cavity systems, the 
complete HBSA scheme also can be accomplished39. Xia et al.40 proposed an efficient scheme for hyperentangled 
Greenberger-Horne-Zeilinger-state analysis with cross-Kerr nonlinearity. Recently, the hyperentangled Bell states 
for two-photon six-qubit systems were produced in experiments41,42, but there are no schemes for the complete 
analysis on two-photon six-qubit quantum states as they are far more difficult, compared with the Bell states in 
both one and two DOFs.

In this paper, we give the first scheme to completely distinguish the hyperentangled Bell states of two-photon 
systems in three DOFs with the help of cross-Kerr nonlinearity without destruction, including a polarization 
DOF and double longitudinal momentum DOFs. Our HBSA protocol for two-photon six-qubit hyperentangled 
systems may be useful in the practical applications in quantum information processing, blind quantum compu-
tation, distributed quantum computation, and especially long-distance high-capacity quantum communication 
in the future. With hyperdense coding on two-photon systems entangled in three DOFs simultaneously as an 
example, we show the principle of the applications of our HBSA protocol in detail.

Results
Complete analysis for the states of a two-photon system in momentum modes. A hyperentan-
gled Bell state of two-photon six-qubit systems in three DOFs can be described as follows:

| 〉 = (| 〉 | 〉 + | 〉 | 〉 ) ⊗ (| 〉 | 〉 + | 〉 | 〉 )
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Here the subscripts A and B denote the two photons. H and V represent the horizontal and the vertical polariza-
tions of photons, respectively. The three independent DOFs are polarization and a double longitudinal momen-
tum (r/l and E/I), shown in Fig. 1. The system of the two-photon six-qubit source42 consists of two type-1 β 
barium borate (BBO) crystal slabs and a eight-hole screen. When a continuous-wave (cw) vertically polarized 
Ar+ laser beam interacts through spontaneous parametric down-conversation (SPDC) with the two BBO crystal 
slabs, and the nonlinear interaction between the laser beam and the BBO crystal leads to the production of the 
degenerate photon pairs, which are entangled in polarization and belong to the surfaces of two emission cones. 
As shown in Fig. 1(a), the insertion of a eight-hole screen allows us to achieve the double longitudinal momentum 
entanglement. The labels in Fig. 1(b) are used to identify the selected modes. The internal (I) and the external (E) 
cones correspond to the first and the second crystals, respectively. Furthermore, l (r) refers to the left (right) side 
of each cone.

The distinction between the internal (I) and the external (E) modes provides us the second longitudinal 
momentum DOF, while the first longitudinal momentum DOF comes from the distinction between the left (l) 
and right (r) modes. Therefore, the six-qubit hyperentangled state described in Eq. (1) is given by the product of 
one polarization entangled state and two longitudinal momentum entangled states of a photon pair.

Figure 1. (a) Source for two-photon six-qubit hyperentangled Bell states. A detailed description of the source is 
given in the previous work42. (b) Modes for two-photon six-qubit hyperentangled Bell states. The upper modes 
correspond to Alice’s photon, while the lower modes correspond to Bob’s photon. l, r, I and E are the left, right, 
internal, and external modes for a photon, respectively.
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Let us denote the four Bell states in the polarization DOF of two-photon systems as
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and four Bell states in the first longitudinal momentum DOF as
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while the four Bell states in the second longitudinal momentum DOF can be expressed as
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Here the subscripts P, F, and S denote the polarization, the first longitudinal momentum, and the second longitu-
dinal momentum DOFs of a two-photon six-qubit system, respectively.

The principle of our scheme for the complete analysis on the quantum states of a two-photon six-qubit sys-
tem in the first longitudinal momentum DOF is shown in Fig. 2. In detail, one can let the two photons AB pass 
through the first quantum nondemolition detector (QND1) whose circuit is shown in Fig. 2(a). Based on the 
principle of cross-Kerr effect (see Methods), the evolution of two-photon six-qubit hyperentangled Bell states and 
the coherent state can be described as follows:
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Here, P  represents the four Bell stats in the polariztion DOF, and S  denotes the four Bell states in the second 
longitudinal momentum DOF. The equation above shows that the Bell states of other two DOFs have not changed. 
If these two photons are in the same state | 〉 | 〉r rA B

 or | 〉 | 〉l lA B
 in the first longitudinal momentum DOF, the coherent 

probe beam will pick up a phase shift + 2θ or − 2θ. If these two photons are in the different states | 〉 | 〉l rA B
 or 

| 〉 | 〉r lA B
, the phase shift of the coherent probe beam will be 0. As the homodyne measurement cannot distinguish 

+ 2θ from − 2θ, there are only two measurement outcomes α  and α θ±e i2  for the coherent probe beam. Thus, 
according to the measurement results, one can distinguish the even-parity states φ± F

 from the odd-parity states 
ψ± F

. That is, QND1 shown in Fig. 2(a) is a quantum nondemolition detector, with which one can distinguish the 
parity of the two photons A and B in the first longitudinal momentum DOF.

After QND1, one can divide the four Bell states in the first longitudinal momentum DOF into two groups, 
φ± F

 and ψ± F
. The next task is to distinguish the different phases in φ± F

 and ψ± F
, respectively. By using the 

50:50 beam splitters (BSs) shown in Fig. 2(b) on the photons, one can get the following transformations:
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As the BSs transform the phase difference of the two states from each group into the parity difference, the two Bell 
states in the same group will belong to different groups after the BSs. Then, if we let photon A and photon B pass 
through the same quantum circuit as QND1 shown in Fig. 2(b), the four Bell states can be distinguished com-
pletely. Although the states φ| 〉| 〉 | 〉−P SF

 and ψ| 〉| 〉 | 〉+P SF
 have changed into | 〉| 〉(| 〉 | 〉 + | 〉 | 〉 )P S l r r lA B A B
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 and 
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(| 〉| 〉 | 〉 | 〉 − | 〉 | 〉 )P S l l r rA B A B
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2

 by BSs in this procedure, respectively, one can use other BSs after the quantum 
circuit as QND1 to recover the initial Bell states in the first longitudinal momentum DOF. The relationship 
between the measurement results of these two QNDs and the corresponding Bell states in the first longitudinal 
momentum DOF is shown in Table 1.

Now, we have finished the distinction of the four Bell states in the first longitudinal momentum, without 
destroying the hyperentanglement in the other two DOFs. Then we move to the next step to distinguish the four 
Bell states in the second longitudinal momentum DOF. As the first longitudinal momentum and the second lon-
gitudinal momentum are all linear momentum, what we do to realize the next distinction is similar to the analysis 
protocol of the first longitudinal momentum DOF. The difference is to interchange the path labels r/l to E/I. The 
principle for distinguishing the four Bell states of the two-photon system in the second longitudinal momentum 
DOF is shown in Fig. 3. Here, we let the two photons pass through QND3 and then QND4 in sequence. With 
these two QNDs, we can analyze the four Bell states in the second longitudinal momentum DOF completely. The 

Figure 2. (a) Schematic diagram of QND1 which is used to distinguish the even-parity states φ± F
 from the 

odd-parity states ψ± F
 in the first longitudinal momentum DOF of the two-photon six-qubit system AB. ± θ 

denotes the cross-Kerr nonlinear media which will make the cohere probe beam α  have a phase shift ± θ when 
there is a signal photon passing through it. X X  is the homodyne measurement to discriminate different phase 
shifts of the coherent probe beam. r and l represent the left and the right sides of each cone from where the 
photons emit, respectively. The internal (I) and the external (E) cones correspond to the first and the second 
crystal from which the photons are produced, respectively. (b) Schematic diagram of QND2. Each of the 50:50 
BSs acts as a Hadamard operation (| 〉 → (| 〉) + | 〉, | 〉 → (| 〉) − | 〉)r r l l r l1

2
1
2

 on the photon in the first 
longitudinal momentum DOF. After these two photons pass through the BSs, one can use mirrors to separate 
the paths of photons.
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relationship between the measurement results of this scheme and the corresponding Bell states in the second 
longitudinal momentum DOF is described in Table 2.

Complete six-qubit hyperentangled Bell state analysis scheme for states in polarization. Now, 
let us move our attention to the last task, which is to distinguish the four Bell states of the two-photon six-qubit 
system in the polarization DOF. The analysis of the four Bell states in polarization is analogous to that in previous 
works37,43. The schematic diagram for the distinction of the four Bell states in polarization is shown in Figs 4 and 
5.

According to QND5 shown in Fig. 4, the states φ| 〉 | 〉| 〉± F SP
 with the coherent state α  evolve as
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while the states ψ| 〉 | 〉| 〉± F SP
 with the coherent state α  evolve as
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where F  represents the four Bell states in the first longitudinal momentum DOF. In these evolutions, the modes 
| 〉 | 〉H HA B

 or | 〉 | 〉V VA B
 will let the coherent probe beam pick up a phase shift + θ or − θ, but the coherent probe 

beam will pick up no phase shift if the two photons are in the mode | 〉 | 〉H VA B
 or | 〉 | 〉V HA B

. With an X-quadrature 
measurement on the coherent beam, as α θ±e i  cannot be distinguished, one can divide the four Bell states in 
polarization into two groups, the even-parity one φ φ,+ −{ }P P

 and the odd-parity one ψ ψ+ −{ , }P P
.

The next step is to distinguish the different relative phases in each of these two groups. This task can be accom-
plished with the circuit shown in Fig. 5. Here the wave plate R45 is used to accomplish a Hadamard operation 
on the polarization of photons. A Hadamard operation on each of the two photons AB will make the following 
transformations:
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As R45 can transform the phase difference into the parity difference, one can then use the same quantum circuit as 
QND5 to distinguish the parity difference between the two states in each group. Then we use other R45 to recover 
the initial Bell states in polarization DOF. That is, after the photons pass through QND6 shown in Fig. 5, the two 
Bell states in the even-parity group φ φ+ −{ , }P P

 or the odd-parity one ψ ψ+ −{ , }P P
 can be distinguished 

completely. The relationship between the measurement results of this scheme and the corresponding Bell states in 
polarization is described in Table 3.

From the analysis above, one can see that the complete nondestructive analysis for two-photon six-qubit 
hyperentangled Bell states can be accomplished with the sequential connection of the six QNDs. This complete 
HBSA can be used to complete some other important tasks in high-capacity quantum communication, such as 
teleportation with photon systems in three DOFs, hyperentanglement swapping, quantum hyperdense coding, 
and so on.

Bell states QND1 QND2

φ+ F
± 2θ ± 2θ

φ− F
± 2θ 0

ψ+ F
0 ± 2θ

ψ− F
0 0

Table 1.  The relationship between the four Bell states in the first longitudinal momentum DOF and the 
measurement results of QND1 and QND2.
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Discussion
In our six-qubit HBSA scheme, we exploit the cross-Kerr nonlinearity to construct the QNDs to check the parity 
of the two photons in the three DOFs. Therefore, we should acknowledge that the feasibility of the proposed 
scheme depends on the nonlinear phase shift of the Kerr media. Although many works have been reported on 
cross-Kerr nonlinearity44–46, a clean cross-Kerr nonlinearity in the optical single-photon regime is quite a con-
troversial assumption with current technology. In 2006 and 2007, Shapiro and Razavr47,48 pointed out that the 
single-photon Kerr nonlinearity may do no help in quantum computation. Moreover, in 2010, the research results 

Figure 3. Schematic diagram for distinguishing the four Bell states of the two-photon six-qubit system in 
the second longitudinal momentum DOF. (a) QND3. (b) QND4, the 50:50 BS is used to perform the 
Hadamard operation (| 〉 → (| 〉) + | 〉, | 〉 → (| 〉) − | 〉)E E I I E I1

2
1
2

 on the second longitudinal momentum 
DOF of photons.

Bell states QND3 QND4

φ+ S
± 2θ ± 2θ

φ− S
± 2θ 0

ψ+ S
0 ± 2θ

ψ− S
0 0

Table 2.  The relationship between the four Bell states in the second longitudinal momentum DOF and the 
measurement results of QND3 and QND4.
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of Gea-Banacloche49 suggested that a large phase shift via a “giant Kerr effect” with single-photon wave packets 
is impossible at present.

Fortunately, our HBSA scheme only requires a small phase shift, as long as it can be distinguished from zero, 
and much progress has been made on the Kerr nonlinearity and homodyne detection. In 2003, Hofmann et al.50 
demonstrated that a phase shift of π can be achieved with a single two-level atom one-sided cavity system. In 
2010, Wittmann et al.51 investigated the difference between a standard homodyne detector and a 
displacement-controlled photon number resolving (PNR) detector. They showed that the displacement-based 
PNR receiver outperforms the standard homodyne detection. Therefore, for a weak cross-Kerr nonlinearity 
θ  1, if we choose a sufficiently large amplitude of the coherent state, which satisfies the requirement αθ  12 , 
it is possible for us to achieve deterministic distinguishability between the shifted and non-shifted phases in the 
coherent state. Furthermore, in 2011, He et al.46 showed that effects due to the transverse degrees of freedom 
significantly affect the cross-phase modulation process, and made the treatment of single-photon-coherent-state 
interactions more realistic. In the same year, Feizpour et al.52 researched the cross-Kerr nonlinearity between 
continuous-mode coherent states and single photons, and they indicated that a cross-Kerr phase shift is likely to 
be amplified to observable value with weak-value amplification. Moreover, Zhu and Huang53 showed that giant 
Kerr nonlinearity of the probe and the signal pulses may be achieved with nearly vanishing optical absorption. 
The substantial cross-Kerr nonlinearities54,55 have already been obtained in the microwave domain using super-
conducting qubits. In the work by Hoi et al.54, the average cross-Kerr phase shift was demonstrated up to 20 
degrees per photon with both coherent microwave fields at the single-photon level.

Before ending this work, we will briefly discuss the application of our HBSA scheme in quantum hyperdense 
coding. As quantum hyperdense coding is the generalization of quantum dense coding with photon systems in 
several DOFs, with our six-qubit HBSA scheme, one can transfer six bits of classical information by sending only 
one photon. In order to realize quantum hyperdense coding, the sender must choose one of the local 64 operations 

⊗ ⊗U U U U U U U U U U U U{ , , , } { , , , } { , , , }I
P

x
P

y
P

z
P

I
F

x
F

y
F

z
F

I
S

x
S

y
S

z
S  to perform on photon, in which Uj

i ( = , ,i P F S  
and = , , , )j I x y z  are unitary operations in polarization or one of the two longitudinal momentum DOFs. Here, 
the unitary operations Ux

P and Uz
P can be achieved by a half-wave plate set at 45° and 0°, respectively. The combi-

nation of 0° and 45° half-wave plates can be used to perform the unitary operation Uy
P. One can accomplish the 

operation Ux
P , Uy

P , and Uz
P  by putting appropriate half-wave plates in all the four paths of the photon. 

Figure 4. Schematic diagram of QND5 which is used to distinguish the even-parity states φ± P
 from the 

odd-parity states ψ± P
 in polarization DOF of the two-photon six-qubit system AB. PBS represents a 

polarizing beam splitter which is used to transmit the horizontal (H) polarization photon and reflect the vertical 
(V) polarization photon, respectively.
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( = , , )U i P F SI
i  is unit operation, which means doing nothing on the photon. For single-photon 

longitudinal-momentum states, one can exchange the two modes to accomplish the operation ( = , )U i F Sx
i . The 

operation ( = , )U i F Sz
i  can be achieved by putting 0° half-wave plates in the appropriate path. The operation 

( = , )U i F Sy
i  is the combination of ( = , )U i F Sz

i  and ( = , )U i F Sx
i . Using those operations and our six-qubit 

HBSA scheme, we can accomplish the six-bit quantum hyperdense coding which will largely improve the capacity 
of long-distance quantum communication.

In summary, we have proposed an efficient scheme for the complete nondestructive analysis of hyperentangle-
ment of two-photon systems in three DOFs with the help of the cross-Kerr nonlinearity. We use cross-Kerr non-
linearity to construct quantum nondemolition detectors which are used to make a parity-check measurement and 
analyze Bell states in different DOFs of two-photon systems. We have also presented the applications of our HBSA 
protocol in quantum hyperdense coding with two-photon systems entangled in three DOFs simultaneously, 

Figure 5. Schematic diagram of QND6. R45 represents the wave plate which rotates the horizontal and vertical 
polarizations by 45° to accomplish a Hadamard operation (| 〉 → (| 〉) + | 〉, | 〉 → (| 〉) − | 〉)H H V V H V1

2
1
2

 
on polarization of photons.

Bell states QND5 QND6

φ+ P
± θ ± θ

φ− P
± θ 0

ψ+ P
0 ± θ

ψ− P
0 0

Table 3.  The relationship between the four Bell states in the polarization DOF and the measurement 
results of QND5 and QND6.
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which means that our HBSA protocol may be useful for practical applications in quantum information process-
ing, blind quantum computation, distributed quantum computation, and especially long-distance high-capacity 
quantum communication in future.

Methods
Cross-Kerr nonlinearity. The Hamiltonian of a cross-Kerr nonlinearity medium is44,56

χ= . ( )
† †H a a a a 10s s p p

Here ( )a as p  and † †a a( )s p  are the annihilation and the creation operators of the signal (probe) pulse beam, respec-
tively. χ is the coupling strength of the nonlinearity, which is decided by the property of the nonlinear material. 
If we consider that the probe beam is the coherent state α , for an arbitrary signal state ϕ| 〉 = | 〉 + | 〉c c0 1s s s0 1 , the 
effect of the cross-Kerr nonlinearity on the whole system can be described as

ϕ α α

α α

| 〉 | 〉 = ( | 〉 + | 〉 )| 〉

= | 〉 | 〉 + | 〉 | 〉 , ( )
θ

/U e c c

c c e

0 1

0 1 11

s p
iH t

s s p

s p s
i

p

0 1

0 1

QND

where | 〉0 s
 and | 〉1 s

 are the Fock states for the signal pulse. The phase shift θ χ= t and t is the interaction time 
which is proportional to the number of photons with the single-photon state being unaffected.
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