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Abstract
By using transitionless quantumdriving algorithm (TQDA), we present an efficient scheme for the
shortcuts to the holonomic quantumcomputation (HQC). It works in decoherence-free subspace
(DFS) and the adiabatic process can be speeded up in the shortest possible time.More interestingly, we
give a physical implementation for our shortcuts toHQCwith nitrogen-vacancy centers in diamonds
dispersively coupled to awhispering-gallerymodemicrosphere cavity. It can be efficiently realized by
controlling appropriately the frequencies of the external laser pulses. Also, our scheme has good
scalability withmore qubits. Different fromprevious works, wefirst use TQDA to realize a universal
HQC inDFS, including not only twononcommuting accelerated single-qubit holonomic gates but
also a accelerated two-qubit holonomic controlled-phase gate, which provides the necessary shortcuts
for the complete set of gates required for universal quantum computation.Moreover, our
experimentally realizable shortcuts require only two-body interactions, not four-body ones, and they
work in the dispersive regime, which relax greatly the difficulty of their physical implementation in
experiment. Our numerical calculations show that the present scheme is robust against decoherence
with current experimental parameters.

1. Introduction

Quantumcomputation (QC), which permits unitary operations on qubits, has attracted considerable attention
in recent years [1].Many interesting theoretical schemes have been proposed for universal quantum logic gates
in various quantum systems, such as trapped ions [2], atom-cavity systems [3], photons [4, 5], quantumdots [6],
circuit quantum electrodynamics [7], and so on. In experiment, there are stochastic control errors during the
gate operation and the collective noise caused by the interaction between a quantum system and its ambient
environment. To suppress the former, Zanardi andRasetti [8] introduced the holonomic quantum computation
(HQC)which is based on the adiabatic non-abelian geometric phases (holonomies) in 1999. The advantage of
HQC is that it depends only on the global geometric properties of the evolution in parameter space, but
resilience of the local noises and fluctuations [8, 9]. In 2001,Duan et al [10] proposed an interesting scheme for
adiabatic geometric QC in trapped ions. Subsequently,much effort wasmade on nonadiabatic geometricQC
[11–21] and unconventional geometric QC [22–24]. These holonomic quantumgates aremore robust than the
conventional ones. Interestingly, the nonadiabatic geometric QCwere demonstrated in several physical systems
by some groups. For example, in 2013, Feng, Xu, and Long [25] experimentally realized the nonadiabaticHQC
in a liquidNMRquantum information processor for the first time, including one-qubit holonomic gates and the
two-qubit holonomic controlled-not gate.Meanwhile, Abdumalikov et al [26] realizedfirstly the nonadiabatic
holonomic single-qubit operations on a three-level transmon qubit. In 2014, two groups [27, 28] demonstrated
the nonadiabatic holonomic quantum gates in diamond nitrogen-vacancy (NV) centers.
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The decoherence-free subspace (DFS) [29–31] of a quantum system can protect the fragile quantum
information against collective noises as the systemundergoes a unitary evolution in its DFS. It has been
demonstrated thatDFS can be implemented experimentally with different physical systems [32–34]. In 2005,
Wu et al [35] presented a theoretic scheme by combining theHQCandDFS to performuniversal QC. Bymaking
the dark states of theHamiltonian of a quantum system adiabatically evolve along a closed cyclic loop, one can
acquire a Berry phase or quantumholonomy. In 2006, Zhang et al [36] andCen et al [37] gave two schemes for
HQCwithDFS in trapped ions. In 2009,Oreshkov et al [38] introduced a scheme for fault-tolerantHQCon
stabilizer codes. The adiabatic evolution forHQC requires a long run time. To eliminate this dilemma, Berry
[39] came upwith a transitionless quantumdriving algorithm (TQDA), which is also outlined in slightly
differentmanner byDemirplak andRice [40, 41], to speed up the adiabatic quantumgates when the eigenstates
of a time-dependentHamiltonian are non-degenerate in 2009. Later, this transitionless algorithmhas been
gainedwidespread attention in both theory and experiment [42–47]. In 2010, Chen et al [42] used the TQDA to
speed up adiabatic passage techniques in two-level and three-level atoms extending to the short-time domain
their robustness with respect to parameter variations. In 2012, Bason et al [46] experimentally implemented the
optimal high-fidelity transitionless superadiabatic protocol on Bose-Einstein condensates in optical lattices. In
2013, Zhang et al [47] implemented the acceleration of quantum adiabatic passages on the electron spin of a
singleNV center in diamond. As for the degenerate case, Zhang et al [48] generalized TQDA to show the
adiabatic shortcuts to holonomic gates withoutDFS. In 2015, Pyshkin et al [49] showed that the conventional
HQC can be accelerated by using external control fields.

Recently, the diamondNVcenter coupled to a quantizedwhispering-gallerymode (WGM) of a fused-silica
high-Q microcavity has been extensively investigated in quantum information. On one hand, anNV center in a
diamond has long electron-spin coherence time even at room temperature [50], and it is easy tomanipulate,
initialize, and readout the quantum state on theNV center via the external laser andmicrowave field [27, 28]. On
the other hand, amicrocavity can attain a ultrahighQ factor ( >108 even up to 1010)with a very small volume
[51, 52]. Taking advantage of the exceptional spin features ofNV centers and the ultrahigh-Q factor of
microsphere cavity, Park et al [53] observed the normalmode splitting in this cavityQED system in 2006.
Afterward, some interesting schemes for high-fidelity entanglement generation between separateNV centers
and other quantum information tasks have been proposed [54–57]. In 2010, Yang et al [54] proposed a scheme
for generating theW state andBell state in this nanocrystal-microsphere system. In 2015, Ren et al [56] presented
the dipole induced transparency of anNV center embedded in a photonic crystal cavity coupled to two
waveguides and designed two universal hyperparallel hybrid photonic quantum logic gates. Liu andZhang [57]
proposed two efficient schemes for the deterministic generation and the complete nondestructive analysis of
hyperentangled Bell states, assisted by theNV centers coupled tomicrotoroidal resonators.

In this paper, we propose an efficient scheme to speed up the adiabatic holonomic quantum gates inDFS by
using TQDA. This proposal takes advantage of the fault tolerance ofHQCand coherence preserving virtues of
DFS to protect quantum information from localfluctuations and collective noises. The TQDAmakes the
adiabatic holonomic quantumprocess be accelerated in the shortest possible time. In addition, we present a
feasible physical implementation of this protocol with diamondNVcenters dispersively coupled to a quantized
WGMof amicrosphere cavity.We can achieve the shortcuts to adiabaticHQC inDFS by tuning the frequencies
of the external laserfield, which simplifies the operation procedure largely. Our scheme is scalable as it can be
straightforwardly applied toHQCwithmultiple qubits. Different fromprevious works, we use TQDA to realize
a universal HQC inDFS, including both two noncommuting accelerated single-qubit holonomic gates and a
accelerated two-qubit holonomic controlled-phase (CP) gate. This provides an efficient route for shortcuts to
adiabaticHQC inDFS.Moreover, the present proposal requires only two-body interaction, not four-body ones,
which largely reduces the experimental challenge.With a virtual photon process, the cavity decay is greatly
suppressed. Our numerical calculations show that this scheme can reach a high fidelity with current experiment
parameters, and it exhibits the robustness of theHQC.

2. Basic theories

Let us give a brief review of TQDA for a general quantum systemwith an arbitrary time-dependentHamiltonian
( )H t0 . If the initial state is in one of the eigenstates of theHamiltonian ( )H t0 , the quantumadiabatic theorem

guarantees that the system remains approximately in this eigenstate when the time evolution is sufficiently slow.
Due to the long runtime required for adiabatic evolution, it will bring in the extra loss of coherence and
spontaneous emission of the quantum system. In 2009, Berry [39] introduced an optimized quantumalgorithm,
i.e., TQDA, to speed up the adiabatic process. Actually, themain idea of TQDA is that if the adiabatic
approximation for the evolution operator of a given quantum system is specified, one canfind another
HamiltonianH(t)which can generate the equivalent unitary transformation in a shortest possible time. In the

2
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TQDA, theHamiltonianH(t) drives the evolving states following the selected instantaneous adiabatic eigenstates
of ( )H t0 exactly without undergoing transitions, while there is no limitation to the adiabatic theorem. The
HamiltonianH(t) can be divided into two parts: one is the fundamental Hamiltonian ( )H t0 for adiabatic
evolution, and the other is the additionalHamiltonian ( )H t1 which can suppress the transitions of the system
due to the rapid evolution. In theory, the TQDA ensures that the state of the quantum system remains in the
eigenstate of theHamiltonian ( )H t0 invariable for all time. This reveals that the adiabatic evolution can be
accelerated close to the quantum speed limit by using the TQDA [46].

More specifically, considering the fundamentalHamiltonian ( )H t0 of the quantum systemhas the non-
degenerate instantaneous eigenstates ñ∣ ( )n t with corresponding eigenvalues En(t), in the adiabatic
approximation, one couldwrite the state evolution of the systemby

ò òY ñ = - ¢ ¢ - ¢á ¢ ¢ ñ ñ{ }∣ ( ) ( ) ( )∣ ˙ ( ) ∣ ( ) ( )t t E t t n t n t n texp i d d . 1n

t

n

t

0 0

By employing the reverse engineering approach described in [39], the drivingHamiltonianH(t), with  = 1,
takes the formof

å å= ñá + ñá - á ñ ñá = +( ) ∣ ∣ (∣ ˙ ∣ ∣ ˙ ∣ ∣) ( ) ( ) ( )H t E n n n n n n n n H t H ti , 2
n

n
n

0 1

where all kets are time-dependent and å= ñá( ) ∣ ∣H t E n n
n n0 .

On the other hand, if there exists degeneracy in the spectrumof theHamiltonian, the situation becomes
more complex and troublesome. To get rid of this dilemma, Zhang et al [48] generalized the non-degenerate
TQDA to the degenerate case, which can acquire non-Abelian geometric phases, i.e., quantumholonomies, after
a cyclic evolution. Likewise, the transitionless drivingHamiltonian to achieve adiabatic shortcuts for the
degenerate case is given by

å åj j j j j j¢ = ñá + ñá - ñá = ¢ + ¢( ) ∣ ∣ ( ∣ ˙ ∣ ∣ ∣) ( ) ( ) ( )H t E A H t H ti , 3
n k

n k
n

k
n

n
k
n

k
n

kl
n

k
n

l
n

,
0 1

inwhich å j j¢ = ñá( ) ∣ ∣H t E
n k n k

n
k
n

0 ,
, j ñ∣ k

n ( = ¼k m1, 2, , n) are a set of degenerate eigenstates with the

corresponding eigenvalues En(t) of theHamiltonian ¢ ( )H t0 , and j j= á ñ∣ ˙A ikl
n

k
n

l
n represents thematrix-valued

connection, also known as the holonomymatrix.

3. EffectiveHamiltonian based onNVcenters interactingwithmicrosphere resonator

Our system is composed ofN identical NV centers inN separate diamond nanocrystals which are dispersively
coupled to a quantizedWGMat the equator of single fused-silicamicrosphere cavity, respectively, shown in
figure 1(a). AnNV center consists of a substitutional nitrogen atom and an adjacent vacancy in diamond lattice,
and it can be easilymanipulated by optical andmicrowave field. By imposing laser pulses on the arbitraryNV
center interactingwith theWGM, theNV center can bemodeled as aΛ-type three-level structure, as shown in
figure 1(b), where the states = ñ∣ A m, 0s

3 and = - ñ∣ A m, 1s
3 are labeled by the qubit states ñ∣0 and ñ∣1 ,

respectively. = ñ∣ E m, 0s
3 serves as the excited state ñ∣e . In our scheme, the transition ñ « ñ∣ ∣e0 with the

frequency we0 is far-off resonantwith theWGMwhose frequency is wc, and ñ « ñ∣ ∣e1 with the frequency we1 is

Figure 1. (a) Schematic diagram forN identical NV centers locating around the equator of a fused-silicamicrosphere cavity. (b)The
energy-level configuration for anNV center, whereDj and dj are the detunings,Gj and WL j, are the coupling strength between anNV
center and a quantizedWGMof themicrosphere cavity and that between anNV center and the external laserfield, respectively. Here,
the states = ñ∣ A m, 0s

3 , = - ñ∣ A m, 1s
3 and = ñ∣ E m, 0s

3 are encoded as the qubit states ñ∣0 , ñ∣1 , and ñ∣e , respectively.

3
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driven by a largely detuned classical laser fieldwith the frequency wL and the polarization s+ [58]. Assuming
both the coupling strengthsGj and WL j, are sufficiently smaller than the detuningDj, the state ñ∣e can be
adiabatically eliminated. TheNV centers arefixed and separated by distancemuch larger than thewavelength of
theWGM, so that there are no the direct coupling amongNV centers, and they can interact with laser beams
individually. Under the rotatingwave approximation, the interactionHamiltonian, in the interaction picture,
can be expressed as

å s= +d f

=

+ - - ( )( )H g a e H.c., 4
j

N

j j
t

int
1

i j j

where +a (a) is the creation (annihilation) operator for theWGM, fj is initial phase of the laser field imposed on

the j-thNV center, s = ñ á+ ∣ ∣1 0j j , s = ñ á- ∣ ∣0 1j j , and the coupling strength = W +
dD + D( )g Gj j L j,

1 1

j j j
with

w wD = -j e j c0, , d w w w= - -j c j L j10, , , and w w w= -j e j e j10, 0, 1, .
To take d  gj j into account, i.e., in the dispersive regime, the direct energy exchange betweenNV centers

andWGM is negligible. Using the unitary transformation ⎡⎣ ⎤⎦s s= -
d

+ - +( )U a aexp
g

to eliminate the direct

NV-center-WGMcoupling, one can obtain the effectiveHamiltonian for the system composed of theNV
centers as follows:

å åd
l s s= ñ á + +f

=

+

¹

- +∣ ∣ ( ) ( )H
g

aa 1 1 e H. c. , 5
j

N
j

j
j

j k j k

N

j k j keff
1

2

, ,
,

i j k

where l = +
d d( )j k

g g
, 2

1 1j k

j k
and f f f= -jk j k. Herewe assume theWGMfiled is initially in the vacuum state.

Thefirst term corresponds to the Stark shift term, which can be compensated by applying additional lasers with
appropriate frequencies [59, 60]. For simplicity, hereafter, we assume that the coupling strengths gj
( = j 1, 2, ) are identical for all theNV centers, that is, = =g g gj k . The effectiveHamiltonian can be further
simplified as

å l s s¢ = ¢ +f

¹

- +( ) ( )H e H. c. , 6
j k j k

N

j k j keff
, ,

,
i j k

where l¢ = +
d d( )j k

g
, 2

1 1

j k

2

, which serves as the effective Rabi frequency for the energy conservation transition

between the j-th and k-thNV centers. It is indicated that the Rabi frequency l¢j k, is inversely proportional to the
detuning dj (dk), which relies largely on the difference between the frequencies of cavity field wc and the external
laserfield wL j, (wL k, ).With theHamiltonian ¢Heff , applying different initial conditions, one can achieve efficiently
the shortcuts to the adiabatic single-logic-qubit gates and the two-logic-qubit gate inDFS on thisNV-center
system, and the detailed physical implementation about it will be presented in next section.

4. Shortcuts to adiabatic single-qubit holonomic gates inDFSwithNV centers system

4.1. Shortcuts to adiabatic single-qubit bit-phase gate inDFS
Considering a four-NV-center systemwhich is coupled to amicrosphere resonator in a symmetric way and

undergoes a dephasing process, described by the interactionHamiltonian å s= Ä=H BI i z
i

1

4
, whereB is an

arbitrary environment operator. TheDFS against the collective dephasing noise can be expressed as
ñ ñ ñ ñ≔ {∣ ∣ ∣ ∣ }C span 0001 , 0010 , 0100 , 10001 , inwhich ñ = ñ∣ ∣0 0001L and ñ = ñ∣ ∣1 0010L donate the

computational basis, and the remaining states ñ = ñ∣ ∣a 10001 and ñ = ñ∣ ∣a 01002 are employed as the ancillary
states. For accomplishing the singe-qubit bit-phase gate in this logical DFS, we can utilize the targetHamiltonian

l l l= ¢ ñ á + ¢ ñ á + ¢ ñá +( ) ∣ ∣ ∣ ∣ ∣ ∣ ( )H t a a a a0 1 H. c ., 7y
L L0 1,4 1 1,3 1 1,2 1 2

where l¢j k, is the effective coupling strength between the j-th and k-thNV centers for this four-NV-center

system, l l q f¢ = ¢ sin cos1,4 , l l q f¢ = ¢ sin sin1,3 , l l q¢ = ¢ cos1,2 with l l l l¢ = ¢ + ¢ + ¢∣ ∣ ∣ ∣ ∣ ∣1,2
2

1,3
2

1,4
2 , and θ

andf are the time-dependent tunable parameters with q pÎ [ ]0, and f pÎ [ ]0, 2 . The dark states of the
Hamiltonian ( )H ty

0 are q f q f q¢ ñ = ñ + ñ - ñ∣ ( ) ∣ ∣ ∣D t acos cos 0 cos sin 1 sinL L0 2 and
f f¢ ñ = - ñ + ñ∣ ( ) ∣ ∣D t sin 0 cos 1L L1 , respectively. Under the adiabatic cyclic evolution of the dark states, one

gets the required single-qubit holonomic bit-phase gate = b sU ey
i y

2 , where s = ñ á - ñ á(∣ ∣ ∣ ∣)i 0 1 1 0y
L L and b2 is

the Berry phase factor. As shown in equation (3), it is known that with the purpose of achieving shortcuts to the
adiabatic gateUy, one needs an additionalHamiltonian ( )H ty

1 that can block the transition of quantum states
caused by the rapid evolution of the system. In the ordered orthogonal basis ñ ñ ñ ñ{∣ ∣ ∣ ∣ }a a, 0 , 1 ,L L1 2 , the
additionalHamiltonian for speeding up the adiabatic single-qubit holonomic bit-phase gateUy reads

4
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H t i cos

0 0 0 0
0 0 cos sin sin

0 cos 0 sin cos

0 sin sin sin cos 0

i

0 0 0 0

0 0 cos

0 0 sin

0 cos sin 0

. 8

y
1

Now,we focus on how to realize the shortcuts to the adiabatic single-logic-qubit bit-phase gateUy on the
four-NV-center systembymaking use of the additionalHamiltonian. In this case, we choose the initial phase
difference between the external classical laser pulses f = 0jk . On thefirst step, setting f = 0, while increasing θ

from0 to p 2, the correspondingHamiltonian of the system in theDFSC1 is
l q l q q= ¢ ñ á + ¢ ñá + ñ á +∣ ∣ ∣ ∣ ∣ ∣H a a a asin 0 cos i 0 H. c.y

L L1 1 2 21 . ThisHamiltonian is under aΔ-style
structure. For achieving this goal, we can tune the effective Rabi frequencies between the physical qubits as
l l q¢ = ¢ sin1,4 , l l q¢ = ¢ cos1,2 , and l q¢ = ˙

2,4 , and other control parameters are zero. In other words, the first step
can be effectively completed by the three laser fields with different frequencies being applied to the 1-st, 2-nd,
and 4-thNV centers, while there is no any operation on 3-thNV center when the cavity frequency is constant.
Second, keeping θ invariant but changingf from0 to a certain value fc , the requiredHamiltonian takes the form

of l f l f f= ¢ ñ á + ¢ ñ á - ñ á +∣ ∣ ∣ ∣ ∣ ∣H a acos 0 sin 1 i 0 1 H. c.y
L L LL1 12 . Adjusting the effective Rabi frequencies

l l f= ¢ cos1,4 , l l f= ¢ sin1,3 , and l f= ˙
3,4 , one can obtain the requiredHamiltonian. It is worth emphasizing

that theminimal resources with three different frequencies of the external laser pulse can achieve the second
step. Finally, we keepf unchangedwhile decrease θ to 0. The controlHamiltonian for this case reads

l q f l q f l q= ¢ ñ á + ¢ ñ á + ¢ ñá∣ ∣ ∣ ∣ ∣ ∣H a a a asin cos 0 sin sin 1 cosy
L L1 1 1 23

q f q f+ ñ á + ñ á + ∣ ∣ ∣ ∣a ai cos 0 i sin 1 H. cL L2 2 ., and then the system forms a cyclic evolution after tuningf to
0.Different from the former two steps, in order to realize the last step, all of the fourNV centers should be
imposed on the external laser pulsewith different frequencies to obtain the different effective Rabi frequencies
l¢j k, ( =j k, 1, 2, 3, 4, and ¹j k). The details for the parameters chosen in each step for speeding up the
adiabaticUy gate are shown in table 1. Up to now,we have implemented the shortcuts to the single-logic-qubit
holonomic bit-phase gate on the four-NV-center system inDFS.

4.2. Shortcuts to adiabatic single-qubit phase gate inDFS
Here, we illustrate how to accelerate another holonomic gate, phase gate, which is noncommutedwith the
single-qubit bit-phase gate. The targetHamiltonian in the sameDFSC1 can be designed as

l l= ¢ ñ á + ¢ ñá +f( ) ∣ ∣ ∣ ∣ ( )H t a a ae 1 H.c., 9z
L0 1,3

i
1 1,2 1 2

where l l l¢ = ¢ + ¢∣ ∣ ∣ ∣1,2
2

1,3
2 , and the relative phase q l l= ¢ ¢(∣ ∣ ∣ ∣)2 arctan 1,3 1,2 andf are the time-dependent

control parameters with q pÎ [ ]0, and f pÎ [ ]0, 2 . TheHamiltonian ( )H tz
0 has two degenerate dark states as

ñ = ñ∣ ( ) ∣D t 0 L0 and ñ = ñ - ñq q f∣ ( ) ∣ ∣D t acos 1 sin eL1 2 2
i

2 , in companywith two non-degenerate bright states. In
the dark-state subspace, we set q f= = 0 initially. Using the standard formula for theHQC,we can get the
single-qubit holonomic phase gate = b áU ez

i 1 1L1 by adiabatically changing the angles θ andf after a cyclic
evolution, where b f= - q∮ sin d1

2
2

, corresponding to half the solid angle swept out by the polar angles θ andf.
Thus, we can obtain the additional controlHamiltonian ( )H tz

1 to realize the shortcuts to the holonomic phase
gateUzwith the basis ñ ñ ñ{∣ ∣ ∣ }a a, 1 ,L1 2 . That is,

Table 1. Scheme for a three-step approach to realize the shortcuts to
the adiabatic holonomic single-qubit bit-phase gate.

Step θ f the requiredHamiltonian

( )i p0 2 0 Hy
1

( )ii p 2 f0 c Hy
2

( )iii fc p 2 0 Hy
3

5
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Similar to the approach for the shortcuts to single-logic-qubit adiabatic bit-phase gate, we can also accelerate
the adiabatic single-logic-qubit phase gateUz. It can be summarized as follows: ( )i choosing f = 0, while

changing θ from0 toπ, the correspondingHamiltonian can bewritten by l= ¢ ñ áq ∣ ∣H asin 1z
L2 11

l q+ ¢ ñ á + ñ á +q ∣ ∣ ∣ ∣a a acos i 1 H. c. ;L L2 1 2
1

2 2 ( )ii keeping q p= , but increasingf from0 to fc , and the

requiredHamiltonian is l l= ¢ ñ á + ¢ ñ áf f-∣ ∣ ∣ ∣H a ae 1 e 1z
L L

i
1

i
12 - ñ á + ñáf f∣ ∣ ∣ ∣

˙ ˙
a a 1 1 ;L2 1 1 2

( )iii settingf

unchanged, while decreasing θ to 0, and the requiredHamiltonian takes the formof l= ¢ ñ áq f ∣ ∣H asin e 1z
L2

i
13

l q+ ¢ ñ á + ñ á +q f-∣ ∣ ∣ ∣a a acos i e 1 H. c.L L2 1 2
1

2
i

2 . The detailed steps for shortcuts to the phase gate are shown in

table 2, inwhich the dark eigenstates of ( )H tz
0 complete a cyclic evolution in the parameter space. Apparently,

the cyclic evolution path of this approach is unlike the one in the shortcuts to the adiabatic holonomic single-
logic-qubit bit-phase gateUy. On the other hand, the quantumoperations involved for realizing the accelerated
phase gate, which only require three of the fourNV centers atmost to be imposed the external classical laser
pulses, aremuch simpler than the case in the bit-phase gate. The experimental complexity is greatly reduced.
Based on the analysis, it is not difficult tofind that as long as the cavity frequency and the initial phase of the
external laser field arefixed, one can tune the different frequency of the external laser pulse to achieve the
shortcuts to the adiabatic single-logic-qubit phase gateUz inDFS.

5. Shortcuts to adiabatic two-qubit holonomicCP gate inDFSwithNV centers system

Our shortcuts scheme for adiabatic two-qubit holonomicCP gate, which is amore basic and crucial element for
a universal holonomic quantum computer, is based on a variant of the proposedHQCon theDFS in [35]. To
this end, one needs eight physical qubits to encode two logical qubits.We define four computational states as

ñ = ñ∣ ∣00 00010001L , ñ = ñ∣ ∣01 00010010L , ñ = ñ∣ ∣10 00100001L and ñ = ñ∣ ∣11 00100010L , with two ancillary states
ñ = ñ∣ ∣a 100000103 and ñ = ñ∣ ∣a 010000104 .When the physical qubits interact collectively with the dephasing

environment, theDFS can be chosen as ñ ñ ñ ñ ñ ñ≔ {∣ ∣ ∣ ∣ ∣ ∣ }C span a a00 , 01 , 10 , 11 , ,L L L L2 3 4 , and the target
Hamiltonian takes the form as follows:

l l= ¢ ñ á + ¢ ñá +f( ) ∣ ∣ ∣ ∣ ( )H t a a ae 11 H. c. 11cz
L0 1,3

i
3 1,2 3 4

Here the parameters l¢1,3, l¢1,2, andf have the same forms as those in the case for the single-qubit holonomic
phase gate. It is straightforward to obtain the eigenstates with zero eigenvalue of theHamiltonian as follows:

ñ = ñ¢¢∣ ( ) ∣D t 00 L0 , ñ = ñ¢¢∣ ( ) ∣D t 01 L1 , ñ = ñ¢¢∣ ( ) ∣D t 10 L2 , and ñ = ñ - ñq q f¢¢∣ ( ) ∣ ∣D t acos 11 sin eL3 2 2
i

4 . The only

nonzero element ofU(4)-valued connection is f= - q ˙A sin33
2

2
.When the dark states evolve adiabatically along

a cyclic closed path, the logical basis ñ∣11 L will acquire a Berry’s phase b1, while the other computational
components ñ∣00 L, ñ∣01 L, and ñ∣10 L are decoupled. The associated two-qubit CP gate is given by

= b áU ecz
i 11 11L1 inDFS. In our implementation, there is no need to apply four-body interactions, just two-

body ones.One can see that the adiabatic two-qubit holonomy can be accelerated effectively, as illustrated in the
implementation for speeding up single-logical-qubit adiabatic phase gate inDFS. Actually, this is themain
advantage of our work, different fromprevious works. The combination of this accelerated two-qubit
holonomicCP gate and the two noncommuting accelerated single-qubit holonomic gates inDFS described
earlier suggests that the complete set of shortcuts to adiabatic holonomic quantumgates inDFS are effectively
built alongwith a realisable implementation based on four-NV-center systems.

Table 2. Scheme for a three-step approach to realize the short-
cuts to the adiabatic holonomic single-qubit phase gate.

Step θ f the requiredHamiltonian

( )i p0 0 Hz1

( )ii π f0 c Hz2

( )iii fc p  0 Hz3
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Intuitively, the present scheme can be scaled up the encoded logical qubits easily as it requires only two-body
interactions. For example, if wewant to design the two-logic-qubit holonomic CP gate between the m-th and
n-th logical qubits, the targetHamiltonian has the same form as equation (11) butwith the exchanging
l l¢  ¢ - -m m1,2 4 3,4 2 and l l¢  ¢ - -m m1,3 4 3,4 1. Also, we can realize the shortcuts for this scalable CP gate by using
the approach discussed above.

Generally, speeding up holonomic quantum gates inevitably leads to at least an extra transition or detunings
because of the existence of the additionalHamiltonian. By taking the choice of the special path along the
geodesic curve, the controlled complexity can be greatly reduced and the operation procedures can also be
largely simplified. For example, in the Bloch space, choosing the evolution trajectories of the shortcuts to two
noncommuting adiabatic holonomic single-qubit gates and a two-qubit CP gate onDFS are connected geodesic
curves, one can obtain that the dynamical phases of evolution path are vanishing, thus the set of the accelerated
adiabatic holonomic quantum gates are pure geometric.Meanwhile, in thewhole steps, a feasible route is
exploited tomake sure that all of the elements ofmatrix-valued connectionA are vanishing, i.e., =A 0kl

n .

6.Discussion and summary

ForN identical NV centers placed near themicrosphere cavity surface, the coupling strength between them can
be expressed in terms of theNV and cavity parameters as = G

 
∣ ( ) ∣G E r E V Va m0 max [61], inwhich G0 donates

the spontaneous decay rate of the excited state ñ∣e for theNV center,
 

∣ ( ) ∣E r Emax is the normalized electric field
strength at the location r, pn= GV c3 4a

3 2
0 serves as a characteristic interaction volumewith c being the speed of

light and ν being the transition frequency between the excited state ñ∣e and the ground state ñ∣0 , andVm is the
cavitymode volume. The spontaneous decay rate G0 of the excited state reported in experiment is p ´2 83 MHz
[62, 63]. Considering =

 
∣ ( ) ∣E r E 1 6max , n = 471 THz (the transitionwavelength between states ñ∣e and ñ∣0 is

637 nm), and m=V m100m
3, we obtain p» ´G 2 1 GHz [54]. The dephasing time of up to 0.65 ms for pure

NV centers has been experimentally observed [64].When dynamical decoupling pulse sequences are employed
to suppress nitrogen-vacancy spin decoherence, the dephasing time ofNV centres can reach 0.6 s at 77 K [65].
On the other hand, the cavity frequency is w p= ´2 74.8 THzc with the decay rate k p= ´2 0.0748 MHz
and the quality factor =Q 109 [51]. The transition frequencies ofNV centers are w = 2.87 GHz10 (zerofield
splitting) and w = 471 THze0 with a zero-phonon line at 1.945 eV [66]. Here, we have w w c10 , and the
detuning dj is dependent on the difference between the cavity frequency wc and the external laserfield frequency
wL j, . Choosing different frequency of classical laserfield, we can obtain the required different detuning dj when
the cavity frequency isfixed. In our implementation, the coupling strength between theNV center and the laser
field could be pW = ´2 500 MHzL , and the detuning is pD = ´2 20 GHz which satisfies the conditions
D  G andD W L to ensure that the excited state ñ∣e can be eliminated adiabatically. On the other hand,
assuming dD  , e.g., d p= ´2 2 GHz, we have p» W D = ´g G2 2 50 MHzL that fulfills the large
detuning condition d  g . This guarantees there is no energy exchange between theNV systems and the
microcavity. Indeed, it is not necessary to apply the condition dD  , andwe can also reach the condition of
d  g provided the order ofmagnitude ofΔ or δ is not less than GHz, irrespective of the relation between them.
Consequently, we can gain the different effective Rabi frequencies l¢j k, by tuning the detuning between the cavity
frequency and the external laserfield frequency. Once the cavity frequency and the initial phase of the external
laserfield are determined, it is easy to realize the entire physical procedures required in the shortcuts to adiabatic
HQC inDFS by changing the external laser field frequency wL j, .

Assuming all the qubits are in the collective dephasing environment, we use the Lindbladmaster equation to
simulate the performance of the quantumgates under the influence of dissipation [67] :

r
r k r g r g r= - + + + f

-[ ] [ ] [ ] [ ] ( )
t

H D a D S D S
d

d
i , , 12z

int

whereHint donates theHamiltonian in the formof equation (4), ρ is the densitymatrix operator,
r r r r= - -+ + +[ ] ( )D L L L L L L L2 2. å s=-

=
-S

i i1
and å s= =Sz

i i
z

1
. γ and gf are the collective

relaxation rate and dephasing rate ofNV centers, respectively.κ is the decay rate of the cavity. Here, we define
thefidelity of the gate by y r y= á ñ∣ ∣F ideal ideal with y ñ∣ ideal being the corresponding ideallyfinal state under an
ideal gate operation on its initial state y ñ∣ in . Numerical simulation of thefidelities for shortcuts to single-qubit
holonomic phase, bit-phase and two-qubit CP gates are shown infigures 2(a) and (b)with initial states

ñ + ñ(∣ ∣ )0 1L L
1

2
, ñ∣0 L and ñ + ñ(∣ ∣ )00 11L L

1

2
, respectively. By taking the feasible experimental parameters as

d p= ´2 4 GHz1 , d p= ´2 0.4 GHz2 , and d p= ´2 0.4 GHz3 , thefidelities of single-qubit holonomic
phase and two-qubit CP gates can reach about 99.52% and 99.76%, respectively.Moreover, we numerically get a
highfidelity of 99.91% for single-qubit holonomic bit-phase gate with the detunings between the frequencies of
miscosphere cavity andNV centers being d p= ´2 7 GHz1 , d p= ´2 0.7 GHz2 , d p= ´2 0.7 GHz3 , and
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d p= ´2 0.7 GHz4 . That is, our robust protocol has a feasible physical implementationwith the current
experimental techniques.

In summary, we have proposed an efficient scheme for the shortcuts toHQC inDFS by employing TQDA.
Combining the features ofHQCandDFS, the present protocol is robust against the localfluctuations and
collective noises. The optimizedHamiltonian of TQDA can greatly shorten the time required in the adiabatic
HQC to avoid the errors due to the long runtime of quantum information processing.Moreover, we give a
feasible physical implementation of this scheme on diamondNV centers large-detuned interacting with a
quantizedWGMof amicrosphere cavity. Our scheme can also be extended tomulti-logic-qubit HQC inDFS
efficiently. Comparedwith previous works, our schemehas the following advantages: First, the TQDA is newly
applied to implement universalHQC inDFS, andwe realize shortcuts to both two noncommuting single-qubit
holonomic gates and a two-qubit holonomicCP gate inDFS. This provides the necessary shortcuts for the
universalHQC inDFS. Second, this protocol does not require four-body interactions and the entire quantum
operation procedures for realizing the shortcuts to universal adiabatic holonomic quantum gates inDFS are
performed by a virtual photon process, thus the experimental challenge ismuch reduced. Third, our calculation
indicates that our physical implementation proposal can be efficiently realized by appropriately applying the
external laser pulses as long as the initial conditions are determined, which greatly simplifies the experimental
complexity. Numerical calculations reveal that the present scheme can reach a highfidelity with current
technology, whichmay offer a feasible route towards robustHQC.
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