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a b s t r a c t

We investigate the stability and phase transition of localizedmodes
in Bose–Einstein Condensates (BECs) in an optical lattice with the
discrete nonlinear Schrödinger model by considering both two-
and three-body interactions. We find that there are three types of
localized modes, bright discrete breather (DB), discrete kink (DK),
and multi-breather (MUB). Moreover, both two- and three-body
on-site repulsive interactions can stabilize DB,while on-site attrac-
tive three-body interactions destabilize it. There is a critical value
for the three-body interaction with which both DK and MUB be-
come themost stable ones. We give analytically the energy thresh-
olds for the destabilization of localized states and find that they
are unstable (stable) when the total energy of the system is higher
(lower) than the thresholds. The stability and dynamics characters
of DB and MUB are general for extended lattice systems. Our result
is useful for the blocking, filtering, and transfer of the norm in non-
linear lattices for BECswith both two- and three-body interactions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Localized excitation in Bose–Einstein condensates (BECs) has become one of the most interesting
topics in nonlinear lattice systems since the discrete breathers (DBs) and the intrinsic localizedmodes
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are discovered [1–3]. The most well-known fascinating feature of the localized mode is that it can
propagate without changing its shape as a result of the balance between nonlinearity and dispersion
[4–7]. DB arises intrinsically from the interplay between the nonlinearity and the discreteness of the
system. DB has been observed in various systems, such as micromechanical cantilever arrays [8],
antiferromagnet systems [9,10], Josephson-junction arrays [11,12], nonlinear waveguide arrays
[13,14], BECs [15,16], Tonks gas [17], superfluid fermi gases [18], and somedissipative systems [19,20].
The static, dynamical, and other properties of DB have been studied theoretically in the last decade
[21–25]. It has been demonstrated that DBs are attractors in dissipative systems [26–28], or act as
virtual bottlenecks which slow down the relaxation processes in generic nonlinear lattices [29–31].
It is shown that the stability of the discrete localized modes plays a crucial role in blocking, filtering,
and transfer of the norm through a localized mode. By far, there are many interesting works focused
on this stability by considering two-body interactions [32–37].

Recently, the three-body interactions could be observed or realized in experiment and theory
[38,39]. In 2014, Petrov [40] proposed a method to control the two- and three-body interactions in
ultracold Bose gas in any dimension. The three-body interactions play an important role inmany inter-
esting physical phenomena [41–44], and even lead to a variety of unique properties that are absent in
the system dominated by the two-body interactions which can be governed by a Feshbach resonance
[45]. For example, in 2010, Dasgupta [46] discovered that if the two-body interactions are attractive,
the presence of three-body interactionsmakes the crossover process fromBardeen–Cooper–Schrieffer
(BCS) to Bose–Einstein condensates (BECs) a nonreversible one. In 2012, Singh et al. [47] found that
the coupling of the two- and three-body interactions can affect strongly the transition from Mott in-
sulator to superfluid for ultracold bosonic atoms in an optical lattice or a superlattice. Up to now, there
are fewworks on localized excitations in nonlinear lattice systems by considering three-body interac-
tions. Especially, there are no systematic analysis of the types, existence, and stability of the localized
modes, such as DB, the discrete kink (DK) [48–50], and multi-breather (MUB). It is natural to ask how
the two- and three-body interactions affect these properties of the localized modes in BECs.

In this paper, we investigate the stability and phase transition of localized modes in BECs in an
optical lattice with a discrete nonlinear Schrödinger model (DNLS) in the case by considering both
two- and three-body interactions. We find that there are three different types of localized modes,
that is, DB, DK, and MUB, and give the critical conditions for these localized modes. Both the two-
and three-body on-site repulsive interactions can stabilize DB, while the three-body on-site attractive
interactions destabilize it. We calculate analytically the energy thresholds, the Peierls–Nabarro (PN)
energy barrier [51,52], characterizing the stability of the localized excitationmodes. If the total energy
of the system is higher (lower) than the thresholds, the localized states are unstable (stable).Moreover,
the stability and dynamics characters of DB and MUB are general for extended lattice systems. Our
result is important for the transfer of BECs through the discrete localized modes, and is useful for
controlling the transmission of matter waves in interferometry and quantum-information processes
when there are both two- and three-body interactions in the system.

2. localized states and the Peierls–Nabarro barrier

2.1. The model

Besides the on-site two-body interactions, let us investigate the effect on transfer of BECs through
discrete localized mode from the on-site three-body interactions of ultracold Bose gas in an optical
lattice. Under the mean-field theory, the Hamiltonian of the system of BECs in an optical lattice can
be written as [53]:

H =

M
n=1

U1

2
|ψn|

4
+

M
n=1

U2

3
|ψn|

6
−

J
2

M−1
n=1


ψ∗

nψn+1 + c.c

. (1)

Here n(= 1, . . . ,M) is the index of the site. ψn is a complex variable and |ψn(t)|2 ≡ Nn(t) is the
mean number of bosons at site n (i.e., the norm Nn(t)). The first two terms represent the mean-
field two- and three-body interaction energy, respectively, and the third term describes the hopping
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between nearest-neighboring sites. U1 = 4π h̄2 asVeff /m represents the effective on-site inter-atomic
two-body interaction, where Veff is the effective mode volume of each site, m is the atomic mass,
and as is the s-wave atomic scattering length. Here, we focus on the repulsive two-body interaction,
i.e., U1 > 0. U2 represents the effective on-site inter-atomic three-body interactions, including both
the repulsive and the attractive three-body interactions which are represented byU2 > 0 andU2 < 0,
respectively. J is the tunneling amplitude. Within the canonical equation i ∂ψn

∂τ
=

∂H
∂ψ∗

n
, one can obtain

the dimensionless DNLS [53–55]

i
∂ψn

∂t
= λ1 |ψn|

2 ψn + λ2 |ψn|
4 ψn −

1
2
[ψn−1 + ψn+1] , (2)

where

M
n=1

|ψn|
2

= 1. (3)

Here, λ1 = U1/J , λ2 = U2/J and t = Jτ are the normalized dimensionless two-body interaction,
three-body interaction and time, respectively. Assume that ψn(t) = An(t) exp (iθn(t)), the Hamilto-
nian H becomes

H =

M
n=1


λ1

2
A4
n +

λ2

3
A6
n


−

M−1
n=1

[AnAn+1 cos(θn − θn+1)] . (4)

Usually, we use the Peierls–Nabarro (PN) energy landscape [51,52] to reflect the fact that discrete-
ness breaks the continuous translational invariance of a continuum model. It is related to the PN po-
tential whose amplitude can be seen as the minimum barrier which should be overcome to translate
an object by one site. As in Ref. [32], the PN energy landscape is defined as follows: for a given config-
uration of amplitudes An, with respect to the phase difference δθij = θi − θj, the PN energy landscape
is obtained by extremizing H

H l
PN = min

δθij
(−H), Hu

PN = max
δθij
(−H), (5)

where H l
PN and Hu

PN are the lower and upper parts of the PN landscape, respectively.
In order to give an insight into the dynamical behavior of BECs in an optical lattice with both

two- and three-body interactions, wemainly consider the nonlinear trimer model, i.e., the DNLS with
M = 3 lattice sites. In this case, the Hamiltonian H of the system is

HM=3 =
λ1

2


A4
1 + A4

2 + A4
3


+
λ2

3


A6
1 + A6

2 + A6
3


− [A1A2 cos (θ1 − θ2)+ A2A3 cos (θ2 − θ3)] , (6)

where δθ12, δθ23 ∈ [0, π]. When δθ12 = δθ23 = 0, one can get the upper PN energy landscape

Hu
PN = −

λ1

2


A4
1 + A4

2 + A4
3


−
λ2

3


A6
1 + A6

2 + A6
3


+ (A1 + A3) A2. (7)

When δθ12 = δθ23 = π , the lower PN energy landscape can be obtained as

H l
PN = −

λ1

2


A4
1 + A4

2 + A4
3


−
λ2

3


A6
1 + A6

2 + A6
3


− (A1 + A3) A2. (8)

The lower and the upper parts of the PN landscape bound the phase space of the trimer [32]. Because
the localizedmodewhose properties we are studying corresponds to theminimum onH l

PN, we should
focus on the lower PN landscape, i.e., δθ12 = δθ23 = π .
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2.2. Phase transition of localized states and the Peierls–Nabarro barrier

To investigate the type of localized modes and its stability when the norm transfers through a
localized mode, we use the nonlinear trimer model (M = 3 for Eq. (2))

i∂tψ1 = λ1 |ψ1|
2ψ1 + λ2 |ψ1|

4ψ1 −
1
2
ψ2,

i∂tψ2 = λ1 |ψ2|
2ψ2 + λ2 |ψ2|

4ψ2 −
1
2
(ψ1 + ψ3) ,

i∂tψ3 = λ1 |ψ3|
2ψ3 + λ2 |ψ3|

4ψ3 −
1
2
ψ2.

(9)

Here, the normalization reads N =
3

n=1 |ψn|
2

= 1. By setting δθ12 = δθ23 = π , from Eq. (9) one can
get

2λ1A1

1 − 2A2

1 − A2
3


+ 2λ2A1


1 − A2

3

 
1 − 2A2

1 − A2
3


−


1 − A2

1 − A2
3 +

A1 (A1 + A3)
1 − A2

1 − A2
3

= 0,

2λ1A3

1 − 2A2

3 − A2
1


+ 2λ2A3


1 − A2

1

 
1 − 2A2

3 − A2
1


−


1 − A2

1 − A2
3 +

A3 (A1 + A3)
1 − A2

1 − A2
3

= 0.

(10)

Let us define

∂2H l
PN

∂A2
1

≡ H1,
∂2H l

PN

∂A1∂A3
≡ H2,

∂2H l
PN

∂A2
3

≡ H3, (11)

and give inequality

H2
2 − H1H3 ≥ 0. (12)

By solving Eq. (10) one can get the different kinds of solutions, including the stationary states and the
saddle points. By substituting the saddle points obtained from Eq. (10) into Eq. (12), one can get the
critical conditions which are the boundaries between phases I–III in Fig. 1. Actually, the boundaries
can also be gained numerically from Eq. (10).

The results show that phase I occurs when λ1 and λ2 satisfy the relation

λ2 > 1.68708 − 1.08801λ1 + 0.00522λ21. (13)

For this case the norm can be pinned in any one of the three sites, shown in Fig. 2(a)–(c). There exists
DB. That is, the norm is pinned in the middle site.

Phase III appears when λ1 > 3.5 and λ1 and λ2 satisfy the relation

λl < λ2 < λu, (14)

where

λl = 7.39452 − 4.33978λ1 + 0.37649λ21 − 0.0178λ31,

λu = −12.223 + 6.6531λ1 − 1.722λ21 + 0.1715λ31.
(15)

In this case, the norms are localized in the adjacent two sites, shown in Fig. 2(e)–(g). It is called as DK.
Phase II is the part other than phases I and III, shown in Fig. 1. For this case, the norms of the three

sites are nearly equivalent and there is no saddle point on the contour plots of the lower PN energy
landscape H l

PN , shown in Fig. 2(d) and (h). In this case, no localized mode exists.
To investigate the stability of the localized states, we pay our attention to the PN barrier. As shown

in Fig. 2, the projection ofH l
PN onto the A1–A3 plane exhibits one, two, or threeminima. Eachminimum
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Fig. 1. (Color online) The norm distribution and the structure of the localized stateswith two-body interactions (λ1) and three-
body interactions (λ2). The solid lines are the boundaries dividing phases I–III. The dotted line presents the critical value λ∗

2 with
λ1 . When λ2 = λ∗

2 the DK is the most stable one. The symbols (a)–(h) correspond to the sets of parameters (λ1, λ2) used in
Fig. 2. Phase IV is gained by Eq. (17) which corresponds to a four-site model.

Fig. 2. (Color online) Contour plots of the lower PN energy landscapeH l
PN for different λ2 with fixed λ1 = 6. (a)–(h) correspond

to the points a–f marked in Fig. 1. In (a)–(c), the three minima are separated by the two saddle points and DB exists. In (d) and
(h), no saddle point exists, whichmeans there is no kind of localizedmodes. In (e)–(g), twominima are separated by one saddle
point and DK exists. The color codes present the energy of H l

PN .
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refers to a stationary state. If there exist saddle points, the localizedmode appears and these stationary
states correspond to DB or DK. It is clear that the existence of DB, DK, and saddle points depends
strongly on λ1 and λ2. We define the energy of DB (DK) as EDB (EDK ), the energy of the saddle points
as Ethr , and the energy difference ∆E = Ethr − EDB(DK). Actually, ∆E is the PN barrier. When the total
energy of the trimer Et = −H > Ethr or Et − EDB(DK) > Ethr − EDB(DK) = ∆E, the DB (DK) should
be unstable. On the contrary, when Et − EDB(DK) < ∆E, the DB (DK) should be stable. We should
note that Ethr merely marks the energy of the trimer at the saddle point and is identified with the
destabilization threshold of the DB (DK). ∆E is the energy difference between the stationary state
and the saddle points. Hence, ∆E represents the minimum energy barrier required to translate BECs
by one lattice site. The higher ∆E is, the more stable the DB (DK) is. Therefore, the quantity ∆E can
provide a deep insight into the stability property of DB (DK) for different values λ1 and λ2.

The structure of MUB in the extended lattices is similar to that of a DK. MUB is a four-site solution
of the DNLS, with high atomic density concentrated mainly at two middle sites and two low-density
sites. Up to now, there are few studies on the properties of MUB, especially on its stability. Here we
also investigate the effect on transfer of BECs through the MUB from the on-site two- and three-body
interactions. It can be investigated by using four-site model, i.e.,M = 4. Eq. (9) becomes

i∂tψ1 = λ1 |ψ1|
2ψ1 + λ2 |ψ1|

4ψ1 −
1
2
ψ2,

i∂tψ2 = λ1 |ψ2|
2ψ2 + λ2 |ψ2|

4ψ2 −
1
2
(ψ1 + ψ3) ,

i∂tψ3 = λ1 |ψ3|
2ψ3 + λ2 |ψ3|

4ψ3 −
1
2
(ψ2 + ψ4) ,

i∂tψ4 = λ1 |ψ4|
2ψ4 + λ2 |ψ4|

4ψ4 −
1
2
ψ3.

(16)

Here, the normalization reads N =
4

n=1 |ψn|
2

= 1. Similarly, by setting δθ12 = δθ23 = δθ34 = π ,
one can get

λ1

A2
1 − A2

2


+ λ2


A4
1 − A4

2


+

1
2


A2

A1
−

A1 + A3

A2


= 0,

λ1

A2
2 − A2

3


+ λ2


A4
2 − A4

3


+

1
2


A1 + A3

A2
−

A2 + A4

A3


= 0,

λ1

A2
3 − A2

4


+ λ2


A4
3 − A4

4


+

1
2


A2 + A4

A3
−

A3

A4


= 0.

(17)

By solving Eq. (17), one can get the MUB and the saddle points.
Now, let us discuss the stability and dynamics of DB and DK on phases I and III in which the system

has saddle points (i.e., the system has the Peierls–Nabarro barriers), excluding phase II in which there
is only one stationary state without saddle points. As shown in previous works [7,52], if there is no
saddle point, the system should be in a random (generic) state in the presence of boundary or other
local dissipation, and cannot form any kind of localizedmodes. That is, for the systemwith parameters
of phase II, the localized mode does not occur. Although phase IV cannot be shown in Fig. 2 as there
are not enough dimensions, saddle points can still exist and they are also investigated here.

3. Stability of localized states

The contours of the lower PN energy landscapeH l
PN for different λ2 with fixed λ1 = 6 are shown in

Fig. 2(a)–(h). Fig. 2(a)–(c) corresponds to phase I in Fig. 1 and there exist three stationary points and
two saddle points. That is, the norm can be localized in three different ways (see Fig. 1) and DB exists.
Fig. 2(e)–(g) corresponds to phase III in Fig. 1 and there exist two stationary points and one saddle
point (this case cannot exist in the system without three-body interactions, as shown in Fig. 1 with
λ2 = 0). This case corresponds to DK. Fig. 2(d) and (h) corresponds to phase II in Fig. 1 and there exists
only one stationary point but no saddle point.
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Fig. 3. (Color online) Dynamics of the trimer when its total energy is increased with fixed two-body interactions λ1 = 6 and
three-body interactions λ2 = −1.5, where Ethr1 = −1.91469. A projection of the orbit onto the A1–A3 plane is over-plotted
(black curve) in (a)–(d). (a) and (e) Et = −1.9176 < Ethr1 , areas in phase space are disconnected and the amplitudes An(t)
indicate that the maximum amplitude remains at site 2, i.e., the DB is stable; (b) and (f) Et = −1.91179 > Ethr1 , areas in
phase space are connected. A slight instability of the DB centered at site 2 is observed, the breather migrates to site 1, and then
tangles in site 1; (c) and (g) for a high total energy Et = −1.8995, the norm is transmitted to site 1, tangles, and then comes back;
(d) and (h) for an enough high total energy Et = −1.5504, the orbit explores large parts of the phase space and visits all three
sites. In all cases δθ = π .

3.1. The stability and dynamics of DB

To study the transfer of BEC through the DB in an optical lattice with three-body interactions, we
should pay attention to the energy threshold Ethr and energy EDB again. In this case, for λ1 → ∞ and
λ2/λ1 → 0, one can get the saddle point from Eq. (10) as

A1 ≈
1

√
2

+
λ22

√
2λ31

+
λ2

2
√
2λ31

,

A3 ≈
3

2
√
2λ31

−
1

√
2λ21

+
1

√
2λ1

−
λ2

2
√
2λ21

.

(18)

By substituting the saddle point into Eq. (8) with A2
1 + A2

2 + A2
3 = 1, one can get the energy threshold

Ethr1 = −
λ1

4
−

1
2

−
1

4λ1
+

1
4λ21

−
1

4λ31
+

9
16λ41

−
3

2λ51

−


1
12

−
1

8λ21
+

1
4 λ31

−
3

8λ41
+

5
8λ51


λ2

−


1

16λ31
−

3
16λ41

−
1

2λ51


λ22 +


1

32λ41
−

5
4λ51


λ32. (19)

Of course, EDB can also be obtained by substituting the bright breather given by Eq. (10) into Eq. (8).
Next, we consider the fixed point corresponding to the bright breather which is gained from

Eq. (10). An initial condition for the bright breather reads
−→
ψ

DB
(0) = (ADB

1 , A
DB
2 , A

DB
3 ). We add per-

turbations to site 1:
−→
ψ (t = 0) = ((ADB

1 + δA1)e
iδθ , A2, ADB

3 ), where A2 = (1 − |ψ1|
2

− |ψ3|
2)1/2.

Compared to the bright breather, we add an amplitude δA1 to site 1 and rotate the phase θ1 by δθ . Dy-
namics on the PN landscape for increasing total energy of the trimer with fixed two-body interactions
λ1 = 6 and three-body interactions λ2 = −1.5 is shown in Fig. 3. Here Ethr1 = −1.91469, and we
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Fig. 4. (Color online) (a) Energy difference ∆E and (b) perturbations δA1 for destabilizing the DB as a function of three-body
interactions λ2 . Different lines indicate three different values of λ1 , respectively. The left and right of the dotted line present
attractive (i.e., λ2 < 0) and repulsive (i.e., λ2 > 0) three-body interactions, respectively. δθ12 = π/4 in (b).

fix δθ = π and increase δA1 in Fig. 3(a)–(d). If the perturbation is small, Et < Ethr1, the areas in phase
space are disconnected. Furthermore, the DB is stable and practically no transfer of norm takes place
on short time scales [see Fig. 3(a) and (e)]. If the perturbation is large, Et > Ethr1, the areas in phase
space are connected [see Fig. 3(b) and (c)]. Instability of the DB centered at site 2 can be observed, that
is, the breather migrates to site 1 and norm is transferred to site 3 [see Fig. 3(b), (c), (f), and (g)]. If the
perturbation is large enough, the orbit goes out of the regular island into the chaotic sea [see Fig. 2(d)]
and large amplitudes An(t) are found at all the three sites, as depicted in Fig. 3(h).

Further, we use the parameters δA1 and ∆E to investigate the effect of the two- and three-body
interactions on the stability of DB, shown in Fig. 4. It is clear that both ∆E and δA1 increase with
λ1 whether three-body interactions are repulsive or attractive (i.e., λ2 > or λ2 < 0), which means
that a larger perturbation is required to destabilize the DB when λ1 increases and on-site two-body
interactions can stabilize the DB. Interestingly, both ∆E and δA1 increase with repulsive three-body
interactions (λ2 > 0) but decreasewith attractive three-body interactions (λ2 < 0),whichmeans that
a relatively large perturbation is needed to destabilize the DBwhen repulsive three-body interactions
increase. When attractive three-body interactions increase, a relatively small perturbation is needed
to destabilize the DB. That is, repulsive on-site three-body interactions can stabilize the DB, while
attractive on-site three-body interactions destabilize theDB. For large enough attractive on-site three-
body interactions,∆E = δA1 = 0 and the DB is completely unstable.

3.2. The stability and dynamics of DK

One can investigate the stability and dynamics of DK with the same way used above. When
λ2 → −∞ and λ1/λ2 → 0, one can get the saddle point from Eq. (10) as

A1 = A3 ≈
1

√
3

+

√
3

8λ2
+

54
√
3

128λ22
−

3
√
3λ1

8λ22
+

513
√
3

256λ32
. (20)

By substituting the saddle point into Eq. (8) with A2
1 + A2

2 + A2
3 = 1, one can get the energy threshold

Ethr2 =


−
λ2

27
−

2
3

+
1

8λ2
+

29
64λ22

+
981

512λ32
+

151119
16384λ42


−


1
6

+
3

16λ22
+

45
32λ32

+
9369

1024λ42
+

3013119
32768λ52


λ1

+


135
16λ42

+
243
8λ52


λ21 −


27

16λ42
+

189
128λ52


λ31. (21)
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Fig. 5. (Color online) Dynamics of the trimer when its total energy is increased with fixed two-body interactions λ1 = 6 and
three-body interactions λ2 = −7.5, where Ethr2 = −1.44281. A projection of the orbit onto the A1–A3 plane is over-plotted
(black curve) in (a)–(d). (a) A contour plot of the lower PN energy landscape H l

PN is shown for the total energy of the trimer
below the threshold (Et = −1.44304 < Ethr2). Obviously, the areas in phase space are disconnected. (e) The amplitudes An(t)
with time t indicate that the dominating amplitude remains at sites 2 and 3, i.e., the norm is still localized in sites 2 and 3 and
the DK is stable. (b) and (f) for total energy Et = −1.44238 > Ethr2 , areas in phase space are connected. A slight instability of
the DK centered at site 1 is observed. The DK migrates to site 1 and then tangled at site 1 or 3, but the norm of site 2 is nearly
constant. (c) and (g) for a high total energy Et = −1.43809 > Ethr2 , the DK migrates to site 1 and then come back more easily.
Long-range and long-lived Josephson oscillations between sites 1 and 3with negligible variation of norm in site 2 are observed.
i.e., the DK is unstable and the dominating amplitude does not remain at sites 2 and 3. (d) and (h) for an enough high total
energy Et = −0.871835, the orbit is out of the regular island into the chaotic sea, and the dominating amplitude can be found
in any of the three sites, which means the DK is unstable. In all cases δθ = 0.

Next, we consider the fixed point corresponding to the DK which is also gained from Eq. (10).

The initial condition for the DK reads
−→
ψ

DK
(t = 0) = (ADK

1 , A
DK
2 , A

DK
3 ). One can add perturbations

to site 1:
−→
ψ (0) = ((ADK

1 + δA1)e
iδθ , A2, ADK

3 ), where A2 = (1 − |ψ1|
2

− |ψ3|
2)1/2. Dynamics on the

PN landscape for increasing total energy of the trimer with fixed two-body interactions λ1 = 6 and
three-body interactions λ2 = −7.5 is shown in Fig. 5. Here Ethr2 = −1.44281. If the perturbation is
small, Et < Ethr , the areas in phase space are disconnected. The DK is stable and the norm is localized
nearly in the adjacent two sites 2 and 3 on short time scales, shown in Fig. 5(a) and (e). If Et is just
larger than Ethr , the areas in phase space are connected and instability of the DK can be observed; that
is, the DK migrates from site 3 to site 1 and then tangles at 1 or 3, but the norm of site 2 [presented
by A2(t)] is nearly constant, shown in Fig. 5(b) and (f). If the perturbation becomes larger, one can see
that there are long-range and long-lived Josephson oscillations between sites 1 and 3 with negligible
variation of norm in site 2, shown in Fig. 5(c) and (g). If the perturbation is large enough, the orbit
explores large parts of space and visits all three sites, shown in Fig. 5(d), and large amplitudes An(t)
can be found at all three sites, shown in Fig. 5(h).

One can also use δA1 and ∆E to investigate the stability of DK, shown in Fig. 6. For a fixed λ1, one
can see that both ∆E and δA1 first increase and then decrease with λ2. That is, there exists a critical
three-body interaction λ∗

2 with which the DK is the most stable one. When λ2 ≠ λ∗

2 , the DK becomes
more unstable when λ2 decreases or increases. Furthermore, we numerically get the critical value
when λ1 > 3.5

λ∗

2 = 0.27034 − 1.13186λ1 + 0.00516λ21. (22)

It is presented by the dotted line in phase III in Fig. 1.
Obviously, the stability of theDKdepends strongly on both two- and three-body interactions,while

the DK is more unstable than the ordinary DB.
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Fig. 6. (a) (Color online) Energy difference ∆E and (b) perturbations δA1 for destabilizing the DK as a function of three-body
interactions λ2 . Different lines indicate three different values of λ1 , respectively. λ∗

2 is a critical value of λ2 . When λ2 = λ∗

2 , the
DK is the most stable one for the fixed λ1 . δθ12 = 0 in (b).

3.3. The stability and dynamics of MUB

For MUB, the lower PN energy landscape in Eq. (4) becomes

H l
PN = −

λ1

2


A4
1 + A4

2 + A4
3 + A4

4


−
λ2

3


A6
1 + A6

2 + A6
3 + A6

4


− (A1A2 + A2A3 + A3A4) . (23)

When λ2 → −∞ and λ1/λ2 → 0, one can get the saddle point from Eq. (17) as

A1 ≈
1

√
3

+

√
3

8λ2
+

54
√
3

128λ22
−

3
√
3λ1

8λ22
+

513
√
3

256λ32
,

A3 ≈
1

√
3

+

√
3

8λ2
−

54
√
3

128λ22
−

3
√
3λ1

8λ22
+

513
√
3

256λ32
,

A4 ≈
27

√
3

4λ22
. (24)

By substituting the saddle point into Eq. (23) with A2
1 + A2

2 + A2
3 + A2

4 = 1, one can get the energy
threshold

Ethr3 = −
λ2

27
−

2
3

+
1

8λ2
−
λ1

6
−

403 + 12λ1
64λ22

−
3


−8541 + 3072λ1 + 640λ21


2048λ32

+
9


103827 + 61338λ1 + 8032λ21 − 3584λ31


8192λ42

. (25)

Suppose that the initial condition for the MUB is
−→
ψ

MUB
(t = 0) = (AMUB

1 , AMUB
2 , AMUB

3 , AMUB
4 ). One

can add perturbations to site 1:
−→
ψ (0) = ((AMUB

1 + δA1)e
iδθ , A2, AMUB

3 , AMUB
4 ), where A2 = (1− |ψ1|

2
−

|ψ3|
2
−|ψ4|

2)1/2. Dynamics of theMUB for increasing total energy of the four-site systemwith λ1 = 6
and λ2 = −7 is shown in Fig. 7. Here Ethr3 = −1.50027. If there is no perturbation, i.e., δA1 = δθ = 0,
the MUB is stable absolutely and the norm is localized in the middle adjacent two sites 2 and 3 with
A2(t) = A3(t) and A1(t) = A4(t), shown in Fig. 7(a). If the perturbation is small, Et < Ethr3, the MUB is
stable and the norm is localized nearly in the adjacent two middle sites 2 and 3, shown in Fig. 7(b). In
contrast, if Et is just larger than Ethr3, theMUB becomes unstable after t ≈ 78 time steps, and theMUB
migrates from sites 2 and 3 to sites 3 and 4 or 1 and 2, shown Fig. 7(c). Similarly, if the perturbation is
large enough, the stability of the MUB is destroyed, shown in Fig. 7(d).

Also, one can use δA1 and ∆E to investigate the stability of MUB, shown in Fig. 8. For a fixed λ1,
both∆E and δA1 first increase with λ2 before decreasing. That is, there still exists a critical three-body
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Fig. 7. (Color online) Dynamics of MUB for increasing the total energy of the four-site system with λ1 = 6 and λ2 = −7,
where Ethr3 = −1.50027. (a) δA = δθ = 0, the MUB is absolutely stable, and A1(t) = A4(t) and A2(t) = A3(t). (b) δθ = π/3.4,
Et = −1.50212 < Ethr3 , the multi-breather is stable, and it is still located at sites 2 and 3. (c) δθ = π/2.8, Et = −1.47925 is
just larger than Ethr3 , the multi-breather is unstable, and the norm from sites 2 and 3 migrate to sites 3 and 4 after t ≈ 78 time
steps. (d) δθ = π/2, Et = −1.42046 > Ethr3 , the stability of the multi-breather is destroyed, and the dominating amplitude
can be found in any of the four sites. In all cases δA1 = 0. Initial conditions are given by Eq. (17).

Fig. 8. (Color online) (a) Energy difference∆E and (b) perturbations δA1 for destabilizing the MUB as a function of three-body
interactions λ2 . Different lines indicate three different values of λ1 , respectively. The λ∗

2 is a critical value of λ2 . When λ2 = λ∗

2 ,
the MUB is the most stable for the fixed λ1 . δθ12 = π/3.4 in (b).

interaction λ∗

2 at which the MUB is the most state one. When λ2 ≠ λ∗

2 , the MUB becomes unstable
when λ2 decreases or increases.

4. Extended lattices

Now, let us generalize our study to the case with extended lattices, i.e.,M > 4.

4.1. DB in extended lattices

Here we use the same initial conditions as the case with three sites, i.e., λ1 = 6, λ2 = −1.5, to
study an extended lattice system. We assume M = 101 and the DB locates at the site n = 51. The
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Fig. 9. (Color online) The stability andmigration of a DB in extended lattices (M = 101 sites). The color code represents |ψn(t)|.
The insert in (a) represents the structure of DB. Initial conditions are given by Eq. (26) with (a) δA = δθ = 0, Et = −2.61029 <
Ethr1 , (b) δA = 0.184, δθ = π , Et = −1.91179 is just larger than Ethr1 , (c) δA = 0.199, δθ = π , Et = −1.87136 > Ethr1 . In all
cases λ1 = 6 and λ2 = −1.5.

initial condition reads

ψ50(0) = (ADB
1 + δA1)e

iδθ ,

ψ51(0) = A2,

ψ52(0) = ADB
1 ,

ψn(0) = 0, else,

(26)

where A2 = (1 − |ψ50|
2
− |ψ52|

2)1/2 and ADB
1 is obtained exactly from Eq. (10). The wave function is

normalized to
M

n=1 |ψn|
2

= 1. The stability and migration of a DB in extended lattices (M = 101
sites) is shown in Fig. 9. The solution for the DB in the trimer, i.e., the initial condition shown in
Eq. (26), is inserted in the extended lattice. Here Ethr1 = −1.91469 when λ1 = 6 and λ2 = −1.5
(corresponding to Fig. 3). Obviously, when no perturbation is added to the site 50, i.e., δA1 = δθ = 0,
the breather is stable, shown in Fig. 9(a) and (d).When the perturbation is added to the site 50 and the
total energy of the local trimer Et is just larger than Ethr1, the breather is stable and nomigration takes
place, different from the case with three sites, shown in Fig. 9(b) and (e). The reason is that the energy
can flow into additional degrees of freedom in extended lattices. When the perturbation is large and
the total energy of the local trimer Et > Ethr1, the breather is destabilized and migrates from site 51
to site 50 after t ≈ 2 time steps, similar to the case with the three-site model, shown in Fig. 9(c)
and (f).

4.2. MUB in extended lattices

ForMUB,we use the same initial condition as the casewith the four-sitemodel to study its stability
and dynamics in the extended lattice system (M = 101 sites), i.e., λ1 = 6 and λ2 = −7. Here, the
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Fig. 10. (Color online) The stability and migration of a MUB in extended lattices (M = 101 sites). The color code represents
|ψn(t)|. The insert in (a) represents the structure of MUB. Initial conditions are given by Eq. (17) with (a) δA = δθ = 0,
Et = −1.55596 < Ethr3 , (b) δθ = π/2.8, Et = −1.47925 is just larger than Ethr1 , (c) δθ = π/1.79, Et = −1.39563 > Ethr3 . In all
cases λ1 = 6 and λ2 = −7.

MUB is located at the sites n = 51 and n = 52. The initial condition reads

ψ50(0) = (AMUB
1 + δA1)e

iδθ ,

ψ51(0) = A2,

ψ52(0) = AMUB
2 ,

ψ53(0) = AMUB
1 ,

ψn(0) = 0, else,

(27)

where A2 = (1−|ψ50|
2
−|ψ52|

2
−|ψ53|

2)1/2 and AMUB
1 and AMUB

2 are obtained exactly from Eq. (17). The
wave function is normalized to

M
n=1 |ψn|

2
= 1. The solution for the MUB in the four-site model is

inserted in the extended lattice. Here Ethr3 = −1.50027 when λ1 = 6 and λ2 = −7. Obviously, when
no perturbation is added to site 50, i.e., δA1 = δθ = 0, the breather is stable, shown in Fig. 10(a) and
(d). As |ψ50(t)| = |ψ53(t)| and |ψ51(t)| = |ψ52(t)|, the red and the blue lines are overlapped, and the
black and the green lines are overlapped in Fig. 10(d). When the perturbation is added to site 50 and
the total energy Et is just larger than Ethr3, the energy can flow into additional degrees of freedom in
extended lattices, and theMUB is still stable and nomigration takes place, shown in Fig. 10(b) and (e).
When the perturbation is larger and the total energy Et > Ethr3, the MUB is destabilized and migrates
from site 51 to site 53 and locate in sites 52 and 53 after t ≈ 14 time steps, shown in Fig. 10(c) and (f).

From the discussion above, one can see that the stability and the dynamics characters of both DB
and MUB are general for extended lattices.

5. Discussion and summary

Although the three-body interactions could be observed or realized in experiment and theory
[38,39], there are no systematical analysis of their type, existence, and stability of the localizedmodes.
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Previous works indicated that DB can exist and its stability plays a crucial role in blocking, filtering,
and transfer in BECs [29–31,52]. The exact condition to destabilize DB is still not clear, especially in
the case by considering three-body interactions. Recent works [31,33] showed that MUB can exist for
BECs in optical lattices by only considering two-body interactions in the case with large interactions
and appropriate phases.

In our work, we systematically investigated the existence of the different localized modes for
different parameters (λ1, λ2), i.e., DB, DK, and MUB, and discussed the effect of two- and three-body
interactions on their stabilities. Both on-site repulsive two- and three-body interactions can stabilize
DB, while on-site attractive three-body interactions destabilize DB. DK and MUB are the most stable
oneswhen the three-body interactions are equal to a critical value for the fixed two-body interactions.
It may provide effective guidance to gain different kinds of localized modes in optical lattices [7,30]
and help us to study its properties in experiment, especially for MUB.

Besides, in our work, three analyzed thresholds to destabilize the three localized modes are given
explicitly. If the total energy of the system is higher than the energy thresholds, the localized state
is unstable. On the contrary, if the total energy of the system is lower than the energy thresholds,
the localized state is stable. It may lead to some interesting applications for blocking and filtering
atom beams when there are both two- and three-body interactions in the system. Furthermore, it is
useful for controlling the transmission of matter waves in interferometry and quantum-information
processes [56].

In summary, we have investigated the stability and phase transition of localized modes in BECs
in an optical lattice with the discrete nonlinear Schrödinger model by considering two- and three-
body interactions. It has been shown that there are three different types of localized modes. The first
one is bright DB which can be stabilized by both on-site repulsive two- and three-body interactions.
However, on-site attractive three-body interactions destabilize DB. The second one is DK which is
the most stable one when the three-body interaction is equal to a critical value for fixed two-body
interactions. The third one is MUB. It becomes the most stable one when three-body interaction is
in the critical value. Moreover, the stability and dynamics characters of DB and MUB are general for
extended lattice systems. Our results provide a deep insight into the dynamics of blocking, filtering,
and transfer of the norm in nonlinear lattices for BECs by considering both two- and three-body
interactions.
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