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We provide a general dynamical approach for the quantum Aadanti-Zeno fects in an open quantum system under repeated
non-demolition measurements. In our approach the repea¢egurements are described by a general dynamical modhautit
the wave function collapse postulation. Based on that maselfurther study both the short-time and long-time evolusi of
the open quantum system under repeated non-demolitionuneeasnts, and derive the measurement-modified decay fiaties o
excited state. In the cases with frequent ideal measurena¢rtero-temperature, we re-obtain the same decay ratatfsdimn

the wave function collapse postulation (Nature, 2000, 48). The correction to the ideal decay rate is also obtaimetér the
non-ideal measurements. Especially, we find that the qoa@eno and anti-Zenofkects are possibly enhanced by the non-ideal
natures of measurements. For the open system under measitsemith arbitrary period, we generally derive the rateatign for

the long-time evolution for the cases with arbitrary tenapere and noise spectrum, and show that in the long-timaienlthe
noise spectrum isfiectively tuned by the repeated measurements. Our appreadha able to describe the quantum Zeno and
anti-Zeno &ects given by the phase modulation pulses, as well as thearglguantum control schemes.
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1 Introduction system with dissipation, QZE shows that the time-irre\sesi
decay of such a state can be suppressed when the quan-
Quantum Zenoféect (QZE) [1] and quantum anti-Zenfiect  tum measurements are frequent enough. In addition to the
(QAZE) [2] are among the most interesting results given byQZE in such an extreme limit, the decay rate of the unsta-
quantum mechanics. The twdfects describe the evolution ble state in a dissipative system is also possible to be in-
of a quantum system under repeated (or continuous) measurereased if the measurements are repeated with an “interme-
ments. QZE shows that, for a closed quantum system withiate” frequency. That is known as quantum anti-Zeno ef-
finite-dimensional Hilbert space, the unitary evolutiont&  fect. QZE and QAZE have attracted much attention since
inhibited by the repeated measurements. Not surprisitigdy, they were proposed. So far the twiezts have been experi-
similar inhibition can also occurs in the Rabi oscillatidreo  mentally observed in the systems of trapped ions [4,5faultr
quantum open system coupled with an environment. cold atoms [6—8], molecules [9] and cavity quantum electric
Onthe other hand, for an unstable state in an open quanturynamics (cavity QED) [10].
The QZE and QAZE were previously derived with the pos-
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ment. After the initial proposals of the twdfects, many au- by the dynamical coupling between the quantum open sys-
thors have discussed the dynamical explanation of QZE andem and the apparatus. The postulation of wave function col-
QAZE via the unitary quantum mechanical approach withoutlapse is not used. To describe the repeated measurements,
wave packet collapse. For the unitary evolution of a closedwe use a multi-apparatus model that in each measurement,
system or the Rabi oscillation of an open system, many authe open system interacts with an individual apparatus, [35]
thors pointed out that the QZE in these systems can also behile all the other apparatus are left alone. As proved in
explained in a dynamical approach [11-31]. These explanasect. 2, regarding to the evolution of the density operator o
tions are based on the considerations of quantum dynamiche quantum open system, this multi-apparatus model of re-
of the quantum system as well as the apparatus during thpeated measurements is equivalent with the intuitive model
measurements. In these complete dynamical analyses, QZ&here all the measurements are given by the same appara-
can appear naturally during the evolution of the reduced dentus and the state of this apparatus is initialized beford eac
sity matrix of the system under the frequent interactiortewi measurement. We also point out, in our model there is no
the apparatus, and the postulation of wave packet collapsepecial restriction on the details of the measurement gce
is not required. These explanations of QZE were previouslye.g., the coupling between the to-be-measured system and th
given for many special systems and set-ups for measurementeeat bath. To be more practical, we concentrate on the case
(e.g., two-level atoms under the detection with laser m)ise of “repeated measurements”, i.e., the duration time of each
Recently some of us provided a general dynamical proof ofmeasurement is much smaller than the time interval between
QZE for any closed system under quantum non-demolitiontwo measurements.
measurements [30]. Using the multi-apparatus dynamical model of repeated
For the QZE and QAZE of the decay of an unstable statemeasurements, we completely investigate tffect of the
in a quantum open system with dissipation, there are alsaneasurements on both the short-time and long-time evolutio
similar discussions in which the dynamical process of theof the TLS, and derive the QZE and QAZE in various cases.
measurements is included [31-37]. In refs. [33—36], whereFor the short-time evolution, with time-dependent peraurb
the quantum open system is also assumed to be under r&on theory, we obtain the short-time decay rate of the excit
peated measurements, the dynamics of every individual messtate of the TLS, and show that when the TLS is under re-
surement is discussed in detail. Nevertheless, in these repeated ideal projective measurements, the short-timeydeca
erences the total survival probability of the initial state  rate given by our dynamical model is exactly the same as
the open system is just intuitively calculated as the prod-the one from the wave packet collapse postulation [2]. In
uct of the one after each measurement, rather than derivethe case of imperfect measurements, the corrections due to
from the dynamical equation for the total evolution process the non-ideality and the finite duration time of the measure-
This treatment is appropriate for the cases with ideal groje ments can also be naturally obtained. We prove that in the
tive measurements. However, as we will show in sect. 3, incase of non-ideal measurements, QZE also occurs when the
the cases of general measurements which could be non-ideaheasurements are frequent enough.
a more first-principle analysis is required. There have also For the long-time evolution of the TLS, we derive the rate
been some full dynamical discussions of QZE and QAZE inequation of the TLS by calculating the complete long-time
the limit of continuous measurement [31,36] (i.e., the sase evolution of the TLS and the environment, rather than by re-
where the system keeps interacting with the measurement aetting the state of the environment after each measurement
paratus during the total evolution time, or the time intérva Since the Markovian approximation is not applied, our rate
between two measurements is much smaller than the duraquation can be used for the cases of heat baths with arbi-
tion time of each measurement) or the case of repeated meaary correlation time and the cases of measurements egpeat
surements [37]. However, in these discussions the measurevith arbitrary frequency. The rate equation clearly shdves t
ments are performed via several special physical systemshe spectrum of the noise iffectively tuned by the repeated
rather than general apparatus. To our knowledge, so feg thermeasurements. Especially, we show that when the measure-
has not been a general dynamical explaination for QZE andnents are frequent enough, the time-local approximation an
QAZE of the unstable states in a quantum open system for areoarse-grained approximation will be applicable. In tlaise;
bitrary environment spectrum, environment temperatutk an at zero temperature, the decay rate given by the long-time
system-apparatus coupling. rate equation is the same as the short-time decay rate from
In this paper, we provide a general dynamical approactour short-time perturbative calculation in sect. 4. Furthe
for the QZE and QAZE of unstable states in a quantum opermore, as a result of the counter-rotating terms in the cagpli
system. For simplicity, we illustrate our central ideashwit Hamiltonian of the TLS and the heat bath, the decay rate of
a two-level system (TLS) coupled to a heat bath of a multi- the ground state of the TLS may be varied to a non-zero value
mode bosonic field. As pointed in sect. 4, it is straightfor- by the periodic measurements, even at zero temperature.
ward to apply our model in open systems and environments Our model is also able to describe the QZE or QAZE
of other kinds. given by periodic phase modulation pulses [38-40] rather
In our approach, every measurement process is describetian measurements, since the former one can be considered
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as a special kind of non-ideal measurement with complex debath.

coherence factor. Our calculation also provides a micnaisco

or full-quantum theory for the recent proposals of stodbast 2.1 The dynamical model of a single quantum non-
control of quantum coherence [41-43], where the repeate@diemolition measurement

projective measurements are semi-classically described a ] .
stochastic term in the Hamiltonian. According to the dynamical theory of quantum non-

This paper is organized as follows. In sect. 2 we post ourdemolitio_n measurements [44], the measurement process can
multi-apparatus dynamical model for the repeated quantun€ described by the coupling between the to-be-measured
non-demolition measurements. In sect. 3 we show our dySyStemQ and the apparatus. The total Hamiltonian of
namical description for the dissipative TLS under repeatecd®"dA has an expression of conditional dynamics
measurement_s. In sect. 4 we caICl_JIat_e the short-time decay Hy = Z liXil @ Hj, (1)
rate of the excited state of the TLS via time-dependent pertu =t
bation theory, and discuss thfexts given by non-ideal mea- . o .
surements or phase modulation pulses on QZE and QAZE. Ithere_H,- IS the Hamﬂtoman of the apparatéswith respect
sect. 5 we consider the long-time evolution of the system, det0 the jth eigenstagj) of the observable of the open system.

rive the dfective noise spectrum experienced by the TLS andBe‘cc_)re the measurement, _the systQnean be nany super-
obtain the rate equation for the long-time evolution at &nit position state,;; C;lj), while the apparatus is set in a pure

temperature. There are some conclusions and discussions §ﬁate|app. If the duration time of the mgasuremenfn;s, the
measurement leads to the transformation

sect. 6.
D Cilblapp - > CilpIA), 2)
2 Multi-apparatus for repeated measurements =1 i=1
where
In this paper, we discuss the quantum evolution of a dis- IAj) = ™M™ japp 3)

sipative TLS under repeated qua_ntum non demolmon_ ME354 the finial state of the apparatus with respect to the tate
surements. There are two possible models to describe the . ;
: ) of the systemQ. Therefore, in the more general case, if the
repeated quantum measurements, i.e., the single-apparaty ... ; . )
. ; mitial density matrix of the syster® is pq, after the mea-
model and the multi-apparatus model. In the single-apparat . ;
. surement the density matrix Qf becomes
model, all the measurements are completed via the same ap-
paratus whose state is “initialized” to a special one in the b Llpol = E (lpal XANAPINI. 4)
ginning of each measurement. In the multi-apparatus model, i

each measurement is achieved by an individual apparatughen the gect of the quantum non-demolition measurement

[35]. Namely, in every measurement, only one apparatus ingp, the to-he-measured systércan be described by the rel-

teracts with the to-be-measured §ystem whilt_a aI_I the otherg,ant decoherence facto&|A;) in the definition (4) of the
are left alone. In the recent experimental realization oEQZ super-operatar.

in cavity QED [10], in every measurement the state of the
cavity field is measured by an individual ensemble of cold
atoms. It can be considered as an illustration of the multi-
apparatus model.

In the current section, we prove that, regarding to the evoNow we consider the case of repeated measurements. As
lution of the to-be-measured system (in our case, itis th® TL shown in Figures 1(a) and 1(b), we assume the measure-
together with the heat bath), the two models are equivalentment is performed once in every time regibp_l, tn] (n=
They can lead to the same evolution of the density matrix ofl, 2,...; t; = 0) with durationry. During the measurement,
the to-be-measured system. For the convenience of our cathe Hamiltonian of the syster® and the relevant appara-
culation, in this paper we will use the multi-apparatus mode tus isHy. The length of the time intervals between every
in our discussion for QZE and QAZE from the next section. two neighbor measurements is assumed te.bEne system

In the following we will first show the dynamical model of evolves freely with Hamiltoniatg in the time between the
a single quantum non-demolition measurement, and then dmeasurements.
the formal calculation for the evolution of the to-be-meaasu In the single-apparatus model, all the measurements are
system under repeated measurements with single-apparatpsrformed via the same apparafué-igure 1(a)). As shown
and multi-apparatus model. Our result shows that the densitabove, we assume the state of the apparaiasnitialized to
matrix of the to-be-measured system has the same time eva given statgapp before every measurement, and the infor-
lution in both models. For the generality of our discussion, mation obtained byA from the last measurement is “erased”.
in this section the to-be-measured system is assumed to behis initialization or erasing process can be done via $witc
general multi-level quantum system. From the next sectioring on the interaction betweef and an external reservoir
we will focus on the system of TLS together with the heat R, like the spontaneous emission of the two-level atom. The

2.2 The single-apparatus model of repeated measure-
ments
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similar technique has also been used in our bang-bang cool/easurement  Measurement  Measurement Measurement
) i with A with A with A with A
ing scheme for the nano-mechanical resonator [45]. _ ] _
. . . . Free evolution of Q; Free evolution of Q;
Now we consider the evolution of the density matrix@f iniialization of A intiaiization of A
in the repeated-measurement process. At the initial tjne v T v T ™™ 7/ M
the density matrix of) andAis t=0t, tt ty t, gt
(a)
7\ _ ’ 5
PQA (to) = PQ (to) [app(app. (5)
Measurement Measurement Measurement Measurement
. . . ' _ with A with A@ with A®) with A®)
During the time region front, to t;, the first measurement is ]
. . . Free evolution of Q; Free evolution of Q;
performed via the interaction between the syst@rand the
apparatusA while the interaction betweeA and the reser- Ty T . T - 7/ ™
voir Ris switched &. As shown above, at the ending tirhe £=0t, t t 4 ot
of the first measurement, the density matrix of the systgm (b)
becomes Figure1l (Color online) (a) The single-apparatus model of repeated-m
po(ty) = £ [,OQ (t(’))] , (6) surements. All the measurements are_pc_enfqrnjed with th_e appaatusA.
Before every measurement the stateda$ initialized to a given stat@pp.
where the super-operat@:ris defined in eq. (4). (b) Multi-apparatus model for repeated measurements. BEedsurement

In the time region betweey andt/, the Q-A interaction is done with a individual apparatus with initial stéap.

is switched &. The systenf) experiences a free evolution
governed by the free Hamiltonidtig, while the apparatua  In the last step, we have used the fact

and the reservoiR experiences a coupling which induces the +

initialization of the state oA. We denote the evolution oper- Trr [“ARPAR () uAR] = lapp(app. (13)
ator given by théd-R coupling asuar. Then we have the total

density matrixpr of Q. AandR at timet] as Namely, theA-R coupling can make the density matrix Af

to decay to the unique steady stéep(apg, which is in-
dependent of the density matrix &f at the timet; before

Y ot
pr(t) = Urlaret (t1) UngUe ) the switching on of theA-R coupling. That “spontaneous-
with emission-like process” is the physical explanation of tiné “
U = exp|-iHoT] ) tialization” of the apparatus state. Eq. (13) is applicaldten

the influence of thé\-R coupling on the reservoR is negli-
It is pointed out that, sincer andupg are the operators for gible in the total evolution from timé to ty,. Then the den-
different systems, we have sity matrix of Q andA at the beginning timg of the second
measurement becomes
[Ur, uar] = 0. ()] ) )
paa (ty) = pq (1) lapp(app, (14)

which has the same form as the gre (to) at the beginning
Trag [UFUA ro (t2) u; Ru"r: ] of the flrlst measuremenlt. Therefore we can stra|gh_tforvyardl
A generalize our above discussion to the time aftefFinally
= UeTrar [UARPT (tn) UAR] Ur we have the density matrix of the syst@rat the timet/, after
i n measurements andfree evolutions:
UFPQ (tl) U-

UL [pq (t0)] (10) pa () = (UL)" [pqg (to)] - (15)

Then we have the density matrix of the syst@nat timet/

pq (1)

with the super-operatci{ defined ast/[---] = Ug[---] u,T:.
On the other hand, the density matrix of the appar#tas
timet] is given by

2.3 The multi-apparatus model of repeated measure-
ments

Now we consider the multi-apparatus model for the repeated
pa(t) = Tror [UARquT (t2) u,T:uLR] measurements. In this model we assume there are many in-
dividual apparatug®, A@ ... each of which is in the same

= Trr|uarTro |Uror (t) Ut | U}
R[ AR Q[ ror (1) F] AR] statelapp before the measurements. In tith measurement

= Trr [Uaroar (tr) Upg] in the time region_,, tm], the systenQ only interacts with
= lapp(apg (11) themth apparatu®\™, and leave the other apparatus alone.
In the time interval between two measurements, the evaiutio
with the density matriyag (t1) of AandR at timet;: of Qis also governed by the same Hamiltonidp. Never-

theless, the initialization of the state of the apparatusois
oaRr (t1) = Trg [or (t2)] . (12)  required in this multi-apparatus model (Figure 1(b)).
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At the beginning time, of the first measurement, the den- the rotating wave approximation is not used so that the pos-

sity matrix of Q andA® is sible dfects given by the counter-rotating terms can be in-
cluded [46,47].
PQAD (té) =PQ (t{))laPD<aPD« (16) In this paper we consider the evolution of such a dis-

) ) ) sipative TLS under repeated measurements. As shown in
At the timet,, after the first measurement, the density ma- e ahove section, we use the multi-apparatus model to de-
trix of the systenQ is alsoL[pq(tp)]- Attime tj, the density  goripe the repeated measurements. We also assume the

matrix of Qs nth measurement is performed in the time regitn,[t,]
N o , (n = 1,2,...; ty = 0) with the duration timery (Fig-
pQ (1) = Uppq (1) Up = UL [PQ (tO)]‘ A7) lres 2(a) and 2(b)). The time intervals between two neigh-

bor measurements are also assumed to have the same length
7. In these time intervals between the measurements, the
system evolves freely under Hamiltoni&tz. In the multi-

Therefore, at the beginning tinié of the second measure-
ment, the density matrix d and the apparatus? is

paa (1) = pq (1) lapp(apd (18)  apparatus model, we assume there are many apparatuses
AD  AM™_ which can be individually coupled with the
with the same form asoam(ty). Then at timet, after thenth  TLS and distinguish between the stafe$> and|g)®. In
measurements we also have the density matri@ of this paper we denote)® for the quantum state of the TLS,
| B for the state of the heat bath)®™ for the state of the
po (th) = (UL)" oo (1) (19)  nth apparatusA™ and| ) for the state of all the appara-

) ) ] tus. Before the measurement, every apparatus is initially i
Thatis the same as the one (15) given by the single-apparatysyre state. During theth measurement, the TLS is coupled

model. _ _ with the nth apparatu\™ and decoupled with all the other
Therefore, the single-apparatus and multi-apparatus modeypparatuses™n.

for the repeated measurements can lead to the same evolution o5 shown in sect. 2, in the quantum non-demolition mea-
(19) of the to-be-measured syst€nlif we only considerthe  gyrements the coupling between the system and the apparatus
evolution of the systen® under the repeated measurements, A pas an expression of conditional dynamics:

we can use either single-apparatus model or multi-appsratu

model in our calculation. In our discussion in the following H'(vfll) = 1e®g® H((an) +19)(g ® Hg‘), (21)
sections, the syster® includes the TLS and the heat bath

which is coupled to the TLS in the time region of free evolu- \yhere H™ (Hén)) is the Hamiltonian of the apparatug”

tion. W((ej will use the multl—appda}ratlrs mofdel toddescglbiigewith respect to the stafe)® (|g)(5)) of the TLS. In this pa-
repeated measurements periodically performed on the ‘per, we assume the duration timg of the measurement is so

small that the interaction between the TLS and the heat bath

3 Repeated measurements about two level sys-  and the decay of the excited state can be neglected during the
tem measurement.

In thenth measurement, if the state of the TLS before the
measurement is|e)® + B|g)®, and the state of apparatils
In the above section we post our multi-apparatus model fors [app(, then the transformation given by the measurement
the repeated quantum measurements. From this section, w&n be described as
show our dynamical approach for the QZE and QAZE of a

3.1 System and measurements

dissipative TLS under repeated measurements. (1 +B19)®) lapp
We consider a TLS coupled with a heat bath which is de- — ae ™ |g) S| AN 4 BgyS)|AGD
scribed as a multi-mode bosonic field. The Hamiltonian of
the total system is with |Ag)™ and|As)™ the states of the apparatus attached to

the ground and excited states of the TLS

He = wegle)Sel + > wpaja
K |Ag’e>(ﬂ) — e_ng.]e)zTMlapp(n). (22)

+19g >’ (gkax + giay) + h.c..  (20) o _ _
K The ideality of the measurement is described by the overlap

of the state$Ag)™ and|A¢)™ or the decoherence factor
Here |g)® and|e)® are the ground and excited states of

the TLS,aTk andai are respectively the creation and anni- Y€ = VAJAND; v, 6, € Reals (23)
hilation operators of the boson in tHe¢h heat-bath mode

with frequencywy, while gy is the relevant coupling inten- In the case of ideal projective measurement, these twesstate
sity between the boson and the TLS. In our Hamiltortiknh ~ are orthogonal to each other and we haye: 0.
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a ,
(@) Heat - te [t t] D
bath
te [t t)]
—
te [ty thl
(b)
Measurement Measurement Measurement Measurement
with A() with A with A®G) with AN)
Free [ | Free Free
evolution evolution evolution
™ T M T ™ ¢ M T
%H=0t, 4 b t th-1 by t
(c)
] Aq(t) Ag(t) Anlt)
0 ™™ T ™ T ™ ¢ ™ T
%h=0t, 4 b t th-1 ty t
] I'y(f) Ty(t) T4(t) T(f)
0 1 2 ”—M‘ 2 m 7/ v
=01, t b t t et by th

Figure 2 (Color online) (a) The multi-apparatus model of the repegate
quantum measurements of a dissipative TLS. In each measntgthe TLS

is coupled with an individual apparatus and leaves otherigbps alone.
The nth measurement occurs in the time region betwgepandt,. The
TLS is also coupled with the heat bath. (b) The time sequehcepeated
measurements and free evolution governedHpydefined in (20). (c) The
definitions of the function§y(t) and An(t).

3.2 Thetotal Hamiltonian in the interaction picture

February (2014) Vol.57 No. 2 199

To solve the quantum evolution of our system, we use the
interaction picture where the quantum stdtét)), is defined
as
t
o =exfi [ Howw|ve. @

Here|¥ (1)) is the state of the total system in the Schrodinger
picture andHy is given by

Ho (1) = wegl@® (el + )" wiaa+ Y HPTa (t). (28)
k n

In the interaction picture, the quantum stikg(t)), satisfies
the Schrodinger equation

SO = H O 1 0) (29)
with the HamiltoniarH, (t) given by
Hi (1) = 18 lfe ©) fa ® + hec, (30)
where the operatorf (t) and fa (t) are defined as
fa(®) = ) (gae™ + gajdlesedt), (31)
k
fa®) = D An (O Mn. (32)
n=1
Here the detuning takes the form
Ak = Wk — Wey (33)
and the unitary operatd,, is given by
My = ; exp|iH 7w | exp[-iH ) 7u] . (34)
1=1

With the help of the interaction picture, théect of the
measurements is packaged in the definition of the operator

Under our above assumptions, the quantum evolution of theM,. As shown below, in this interaction picture our calcula-
total system including the TLS, the heat bath and the apparations are significantly simplified and we can express all the

tuses is governed by the time-dependent Hamiltonian

H(t) = wegle)®(el + Z wialay + Z HOT, (1)
k n

+ (1&g + |g>‘3’<a)[ > gia + h.c.] > An(t),
k n
(24)

where the function$, (t) and A, (t) are defined as in Fig-
ure 2(c):

1, te [t' t]
Ch®)=1{> n-1- ] 25
n(® {O, otherwise (25)
and
1 teltaty],
An (1) = { 0, otherwise (26)

effects from the measurements in terms of the decoherence
factory,€® defined in eq. (23). In the following two sections
we will derive the short-time and long-time evolutions aéth
TLS with the calculations in this interaction picture.

4 Short-time evolution: First-order perturba-
tion theory

In this section we calculate the short-time decay rate of the
excited stat¢e)® of the TLS under repeated measurements.
For simplicity, we only consider the zero-temperature case
where the initial state of our systemtat t, = 0 as

¥ () = &®vac® [ | lapp™, (35)

where|vad® is the vacuum state of the bosonic field and
lapp™ the initial state of thenth apparatus. We consider the
evolution of the system frormh = 0 to a finial timet = t,
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which, for simplicity is assumed to be an integer multiple of This means that, in the cases of non-ideal measurements with

the periodr + 7y of the measurements. vmax < 1, the QZE also occurs in the limit that the measure-
The finial statd¥ (tr)), of the total system is the solution ments are frequent enough.

of the Schrodinger equation (29). It can be expressed as a In refs. [33-36], the authors have calculated the total sur-

functional series oH; (t): vival probability P (tr) as the product of the one after each

measurement, i.e., the relationship

e
|W(tp)>|=(1—ifo Hl(t)dt+-~-)|W(0)>.. (36)

P(tr) = P()" (44)
The survival probabilityPe (tr) of the statde)®) is given by is assumed. This simplification yields that the short-tiree d
cay rateR(r, tr) is the one in a single period of measurement,
Pe(te) = 1- (¥ (@) QOGN ). (37)  or
We can define the short-time decay rRfe, tr) of |©)® as R(r.tF) = R(1, 7). (45)
Pe (tF) = 1 - R(t, tp)tr. (38) In our case ofr > 1y, eq. (45) leads t&R(r, tr) = Ry (7).

) Therefore, the intuitive treatments (44) and (45) are neaso
Therefore R(r, tg) can also be expressed as a functional se-gpje in the cases of ideal measurements with= 0, and

ries of Hi(t). When the total evolution timé: is small  required to be improved to eq. (39) for the cases of non-ideal
enough, we can only keep the lowest-order term (in our probyeasurements and non-zesp

lem it is the second-order term) bf (t) in R(z, tg). Then we

have the short-time decay rate 4.1 Theeffect given by non-ideal measurements

2 . . .
R(r, tr) ~ :_ Z Igi2SinG (Acr/2) To further _explore the physical meaning of thg short-time d_e
F T cay rate given by eq. (39), we consider the simple case with
N m-1 m identical non-ideal measurements. In this case the decoher
x|N + 22 Z Re[ei(n-m)ﬂz(ﬁw) 1_[ yleif?l] i ence factory,e’ takesn-independent valuge? (y < 1). In
e e I=n+1 the largeN limit with N > 1/(1 - y), eq. (39) gives dg-
(39) independent short-time decay rate:
where R(7,tF) ~ Rmea(7)
N = tF ‘ (40) = fdr]G(g +weg)h()/,6—r]) sin(,zg. (46)
T+T™m

In the case of ideal projective measurements with neg”_;erebwe have usgd trt]ﬁ approtx ma;anrﬁr + ) fThl.h In ¢
gible duration time orry = 0, we havey, = 0 and then e above expression the spectrum funct@) of the hea

the short-time decay rat&(, t) in eq. (39) becomes &- bath is defined as
independent one: G(w) = Z l9k[% 6(w — wy) 47)
k

R(T,t) = Roro (1) = 7 ) lgkl?siné (Axt/2),  (41) , o
K and the functiorh (y, X) is given by

which is the result given by ref. [2] with the postulation of h 3 1-972 48
wave function collapse. Therefore, the QZE or QAZE based (v, %) = 1+ 72— 2ycosx’ (48)
on the ideal decay raf,, (7) can also be obtained with our . . .

model. It is obvious that, in the casg = 0 we haveh(0,x) = 1

In the case of periodic non-ideal measurements, if the com@1d the decay ratBnes(7) in eq. (46) retums to the result

mon upper limit of the modului, of the decoherence factors Rero () given by ideal projective measurements. In the case

in the measurements are smaller than unit, jes ymax < 1 ©! rePeated non-ideal measurements, the funétioné — )
for anyn, then eq. (39) gives on the right hand side of eq. (46) would tune the shape of

the function to be integrated and then change the value of
2Ymax . Ayt Rmea(7).

Rr.tr) <7 Z I9l* (1 + JWX) sin¢ (T) - (42) In Figure 3 we plot the functioh (y, 8 — i) with respect to
K different values of decoherence facge¥. Itis easy to prove

Therefore, for a fixed value of the total evolution tilgewe thath(y, 6 — ) takes peak value at the poinfs= 6 + 2nnt
have (n=0,+1,...) with the width of the order of arccgs There-

_ fore, the éects given by (y, 6 — r7) on the decay ratBmea(r)

lim R( te) = 0. (43)  in eq. (46) seriously depend on the values of bptnde.
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To illustrate these féects, we calculate the decay rate 102 @ 102
Rmea(7) of a TLS in an environment with noise spectrum
—e . w30 E\E% 10" g% 10"
G(w) = Gy(w) = | (+(&)) (49) = = e
0, w < 0, o 100 o 100 ¥=0.3
""" y=0.8
which is, up to a global factor, the same as the noise spectrum 1 ° Rewe
.y . - -1
of the 2p-1s transition of the hydrogen atom [48,49]. As in 10507 104 10731072107 10° 10105 104 102102101 100
the case of realistic hydrogen atom, here we also take 7 (units of 1/ g) 7 (units of 1/wg)
5495wey. The decay rateBmea(r) with 6 = 0,7/2, 7, 37/2 102 102

(c) (d)

and various values gf are shown in Figure 4.

Our results show that, with any valuesyadindg, the short- .
time decay rat&mnea(7) approachesto zero in the limit— 0. gcf
That is, the QZE always occurs when the measurements are ix
repeated frequently enough. This is consistent with the con % 1%°
clusion in eq. (42). On the other hand, in the limits> oo,

Rmea(7) approachesto the natural decay g given by the 101 4

101
. _ 105 104 103102101 100 1075 104 103 10-210-1 100
Fermi golden rule: 7 (units of 1/o 7 (units of 1/a,y)

og)

_ Figure 4 (Color online) The short-time decay raf@ne{r) defined in
Rer = 211G (weg)‘ (50) eq. (46) of a dissipative TLS under repeated measuremergee e take

. the noise spectrum in eg. (49) and illustrate the casesowtld (a),0 = /2
Therefore, the quantum Zeno and anti-Zeffees only oc- (b), 6 = 7 (c), 6 = 3m/2 (d) andy = O (blue solid line),y = 0.3 (green

cur whenr is small enough. dashed line)y = 0.8 (black dashed-dotted line). We also pRies7) (red
When the phasé = 0, as shown in Figure 4(a), both the open circle) defined in eq. (51) given by frequent phase natidul pulses

QZE and QAZE can also appear even when the decoherengtith approximation (53).

factory is nonzero. However, when the valueypbr non-

ideality of the measurements is increased, the regianfof of RmeaSensitively dependents @n Especially, with specific
the appearance of QZE and QAZE becomes narrower. Thajgjyes ofg andy, the non-ideal measurements can enhance
is, in the case of large, the QZE and QAZE with larg¢  ejther QZE or QAZE. Both the-region where the QZE oc-
are always less significant than the ones with smalh this  ¢yrs and the peak value of the decay rate in the QAZE can be
sense the twofkects are suppressed by the non-ideal Meaenlarged by the complex value of the decoherence faettr
surements with real decoherence factors. Finally, the total region of for the occurrence of QZE and
For the cases of non-zero phas¢he dfects given by the  QAZE with non-zeroy is possible to be the same as the one
non-ideal measurements are from both the non-zero valugyr the cases of = 0, or even larger than the latter. That is

of y and the repeated phase modulation given by the phasgye to the complicated behavior of the functio@y, 6 — n).
factor ¢°. As shown in Figures 4(b)—4(d), the final behavior

10 L e 4.2 The quantum Zeno and anti-Zeno effect given by
AR phase modulation pulses
18;(522?/3 As shown in the above subsection, in the cases of non-ideal
= 6 = - ] measurements with # 0, both the QZE and QAZE can pos-
d - : sibly to be enhanced in the cases with nonzero phasegshift
g 4 o ¥ ] in each measurement. Actually in the most extreme cases of
N : A R v = 1, the two dfects can also appear with nonzero phase
ol /’ o /’ S S 6. In that case, the measurements are reduced to the phase
; \ - AN modulation pulses which can induce periodical jumps for the
o aSeEE | NTTEE N relative phase betweee) and|g)). The QZE and QAZE
—2n on 0 P 2n given by the phase modulation pulses have been discussed
g in refs. [39,40] in detail. Here we show that our dynamical

Figure3 (Color online) The functiom(y, 6 — n) defined in eq. (48). Here model is also able to describe thesg=ets.

we plot the curves withy = 0.3, § = 0 (green line with open circle); . . .
y = 05, 0 = 0 (pink dashed line)y = 0.8, # = 0 (black solid line) and If the pulse is repeatedly performed with periodnd neg-

y = 08, 6 = 271/3 (red dotted line). It is clearly shown that the position of ligible duration timery, then the short-time decay rate in
the peak oh(y, 6 — ) is determined by the value & while the width of eg. (39) becomes

the peak decreases wheris increased. As a comparison, we also plot the

function siné(5/2) (blue dashed dotted line). R(T, tF) — RPMP(T)
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EfdnG(g+weg)g(9—n)sin@(g), 51y 5 Thelong-timeevolution: Rate equation

In the above section we have considered the short-time evo-
lution of the dissipative TLS under repeated measurements
. or phase modulation pulses. We obtain the short-time de-
1 sir? (Nx/2) , - -

="~ (52) cay rates via perturbative calculation based on our pure dy-

N sir® (x/2) namical model of repeated measurements. The perturbative
approach is simple and straightforward. Neverthelessghe
sults are only applicable when the total evolution titpés
short.

In this section, we go beyond the short-time calculation
and consider the long-time evolution of the TLS under re-
peated measurements. The problem with projective measure-
ments has been considered in refs. [41-43] in a semi-cdssic
approach with measurements described by a stochastic term

o0 in the Hamiltonian. Here we provide a full-quantum theory
g(x) = 21 Z 6 (X+ 2nm). (53) which can be used for the cases of either ideal or non-ideal
n=—co measurements. The previous results [39,40] on the long-tim
evolution of a dissipative TLS under repeated phase modula-
tion pulses can also be derived in our approach.

For simplicity, here we assume the measurements are iden-
tical with the decoherence factge?. We first deduce the
general form of the rate equation of the TLS in terms of the
effective time-correlation function of the environment, and
then derive the simplified form of the rate equation under the
time-local and coarse-grained approximation.

where the functiog(x) is defined as

g(x

This result is essentially equivalent with the one in re39, [
40].

From now on we assume the functi@fw + wey) has a
finite width Aw, i.e.,G(w + wey) takes nonzero value only in
the region—-Aw < w < Aw. Under this assumption, when
the evolution timeg is large enough so that2tr is much
smaller than the widthhw, we have

If the periodr of the pulses is short enough so that 7t/Aw
and

G(—7/T + weg) = G(TT/T + weg) = 0, (54)

the functionG(n/1 + wey) is localized in the regiorm < 5 <
7. Then the simplification (53) implies

0 . 0
Rewp ~ 211G (— +weg)smc2 (—) . -
T 2 5.1 The general rate equation and effective time-

+2nG (g _2n + weg) sind (g _ n)’ (55) correlation function of the environment
To derive the rate equation for the TLS, we first consider the

where we have assumed € [0,2n]. In this case, as a TLS and the apparatuses as a total system interacting weth th
result of eq. (54), one can further find some speéi@o  heat bath. The evolution of the density mawiX® of such a

that 6/t — 2/t < -Aw andf/r > Aw, which makes combined system can be described by master equation given
G(8/7 + weg) ~ G(B/7 — 27t/7 + weg) ~ 0 OFReyp ~ 0. There by Born approximation (eq. (9.26) of ref. [50]):

are also other special angléswhich makesG(6" /1 + weg)

or G(6*/t — 2m/7 + wey) take the maximum valu&™ of Ep(SA) ®

G (w). Therefore, the decay rafyp can be tuned in the dt .

broad region between 0 .and some maximum valug whl_ch is - _f dsTrs [Hu M, [Hl(s)’p(SA)(s) ®p(B)]], (57)
of the order of 2G™#, This tuning &ect is also predicted in 0

refs. [39,40].
We also point out that, in the limig — 1 the function
h (v, X) in the last subsection has the same behavior

whereH; (t) is defined in eq. (30) and® is the initial density
matrix of the heat bath, which is assumed to be in the thermal
equilibrium state at temperatufie It is pointed out that, in

o0 eg. (57) we do not perform the Markovian approximation.
h(y > LX) ~2n Z d (X + 2nm) (56) The evolution equation for the density matpi®) (t) of the
n=-o TLS can be obtained by tracing out the states of the appara-

tuses in eq. (57). According to eq. (30), in the calculati@n w

asg(x) in the largeN limit. Therefore the results in eq. (51)
need to evaluate the values of

for 27/t << Aw can also be obtained from eq. (46).

In Figure 4 we also plot the short-time decay faggp un- - I~ (SA)
L : . Tra|fa(®) f ,
der approximation (53) with the spectrum (49) anfifetient A [ . CANCT (S)] (58)
values of the anglé. It is shown that, wher is close to Tra|fa(s) fi 0057 (9] (59)
unit the short-time decay raf&esin €q. (46) is quite close Ny £ (SA)
to Remp. In this case the behavior of the short-time decay rate Tra [fA ® ff (S (S)] ’ (60)
is dominated by the repeated phase modulation. Tra [fA,I (s) fa (t) pCN (s)] (61)
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with s < t. Noting that the product offa (t) (f} (t)) and fa (s) where the bare correlation-functiogg) of the heat bath are
(f:i (9)) is nonzero only when there exist integersndng so given by
thatAp, (t) = An(s) = 1or . N

o) (t—9) = Tre| fa (1) £ (90|

Inne sotateliiselGn] 0 S e peldcd], e
When this condition is satisfied, we separate all the appara- k
tuses into two groups: g5’ (t—9) = Tre[ f§ (1) fa (90|
X : {the apparatusesy, A, . .., An} = Z gk l? [ + (ny + 1) e_i(w”‘”@’)(t_s)] (70)
k

Y : {the apparatusef, .1, An2, . . .}
Obviously, X is the group of the apparatuses which interactWith nx = Trg[a}a, o(®] the average number of the boson in
with the system before the tin while Y includes the ones thekth mode of the heat bath. The correlation-function of the
interact with the system after the tinse Therefore the den- Measurements is defined as

sity matrixpS? (s) can be written as f sy
N o 9a(t.9) = Tra[fa (®) £} (93] (71)
P (9) = 9 () pg» (63)

Itis easy to prove that, the functiogs(t, ) andg®” (t — s)
decrease when the absolute valugt ef g increases. When
ands satisfy the condition (62) we have

wherep®X) (s) is the reduced density matrix of the TLS to-
gether with the apparatuses in the grou,pandpg is given

by
oo da (t’ S) = y(nt—ns)ei(nt—ns)e. (72)
,Og = 1_[ Iapp(m)(app. (64)
m=ng+1 If the condition (62) is violated we hawg (t, s) = 0.
On the other hand, egs. (31), (32) and (34), together with the The rate equation (67) shows that, the evolution of the
conditions< t, yield probabilitiesPe g (s) of the excited and ground states of the

N TLS is governed by the time-correlation functidﬁgg (t,9),
¢ Q) 0! fa ) which are given by both the time-correlation function of the
T (®Ta (9= 1_[ exp[lHe TM] exp[—|Hg TM]' (65) heat bath and the decoherence factors of the measurements.
The measurements tune the correlation funclﬁi@ (t,9)
Namely, the operatofa (t) f; () only operates on the state through the functioma (t, ). Especially, the trail oF 3 (t,9)
of the apparatus in the groo Then the quantity in eq. (58) in the long-time-interval region with largie— 5 would be
can be obtained as suppressed by the factgf*™ in the functionga (t, s) de-

- finedin eq. (72).
£ (sA)
TrA[fA ® fa(s)p (S)] To illustrate the #&ects given by the repeated measure-
= p® (9 TrA[f”A ® . (9 pg]. (66)  ments to the #ective correlation functiorIF(AB (t,9), in Fig-

+)
L _ . ure 5 we plotE$?) (t, 0) for a TLS in a zero-temperature envi-
It can be calculated easily with the simple form in eq. (64) o« \?/ith éa&ic)spectrum P

of pg. The terms in eqgs. (59)—(61) can be evaluated in the

similar approach. G (w) = Go (w) = we™/®. (73)
Then we get the rate equation

l=ng+1

Itis clearly shown that the increasing of the frequency ef th

d t
aPe o = —f dsF$Y (t, 9) Pe (9 measurements, or the decreasing of the time interlz-
Ot tween measurements, can lead to the suppression of the long-
+f dSFSIB) (t,9) Py(9), (67)  time trail ofFX}g (t,0).
0 One important parameter for the correlation function

wherePe (1) = (ep®(0)|e)® and Py(t) = 1 - Pe(t) are F(A*B) (t, s) is the dfective correlation timerg, which gives
the probabilities of the excited and ground states of the.TLS F&) (t,s) ~ Ofor|t - § > 7¢. If ¢ is small enough so that the
In the cases of sect. 4 where the initial state of the TLS isvariation of the probabilitie®. () and Py (t) is negligible in
assumed to bge), the P (t) defined here becomes the sur- the time intervakg, we can perform the time-local approxi-
vival probability defined in (37). In eq. (67), thefective =~ mation

time-correlation functionstfB) (t, s) of the environment are

defined as Peg () ~ Peg (1) (74)

FffB) t,s) = 2Re[gf§) (t-90aft, s)] , (68) in eq. (67) and significantly simplify the rate equation.
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—0— r=0.003/weg
—o— T=0.005/weg
50| —2—7=0.010/0,,
S ——17=0.100/wg,
&
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T 0f
_5 L
0 0.005 0.010 0.015 0.020

t (units of 1/w4)

Figure 5 (Color online) The fective time-correlation functioﬁgg(t, 0)
defined in eq. (68) of the environment of a dissipative TLSaingpeated
measurements. Here the heat bath is assumed to be at zeeratumg with
Ohmic spectrum (73), where, = 50Queyg. The incoherence factor of the
non-ideal measurementsjs= 0.5 andd = 0. We plot the behaviors fo:B)
with the measurement periad= 0.003/weg (blue line with open diamond),
0.005/weg (red line with open square), @/ weq (black line with open trian-
gle) and 01/weg (green line). It is clearly shown that the long-time trail of
FX’B) (t,0) is suppressed by the frequent measurements with smalé also
take the limitry = 0.

Eq. (68)yields
TF = Min{ta, 8}, (75)

whereta and g are the correlation times of the functions
ga (x) andg¥?. From eq. (72) we have
a~1=-1/Iny)(t+1m). (76)

In the case of ideal projective measurements we have

7+71y. Therefore, eq. (75) shows that frequent measurements

with small periodr can reduce thefkective correlation-time
of the environment experienced by the dissipative TLS.

5.2 The master equation under time-local and coar se-
grained approximation

In the following we assume thdfective correlation timeg

is small enough and the time-local approximation (74) can be

used. Then the rate equation (67) can be simplified as

d
gire®="Re®Pe(®) + Ry (OPg (D), (77)
where the time-dependent decay raRgt) and Ry (t) are

given by

Reg(h) = f dsF (9. (78)
On the other hand, eq. (72) implies that
gA(t,S)=gA(t+T+TM,S+T+TM). (79)

This relationship, together with the definitionsBf2 (t, 9),
gives

F/(fg(t,s)zFffg(t+T+TM,S+T+TM). (80)

February (2014) \ol.57 No. 2

Therefore, whert is much longer than theffective correla-
tion timerg, we have

Reg () = fo t dsFi (t, 9)

t
= f dSFI(AiB?(t+T+TM,S+T+TM)
0

ft+T+TM
T+TMm

t+7+1m
~ f dSF(AiB)(t+T+TM,S)
0

= Reg(t+7+7M),

and then the decay rates become periodic functiotsvith
periodt + v, which is the same as the period of the mea-
surements. In Figure 6 we plot tiRg (t) for the system in the
calculation of Figure 5. The periodic behaviorfg (t) in
the larget case is illustrated clearly.

If the measurements are frequent enough so that the vari-
ation of the probabilitie®eq () in the time intervalr + 7y
can be neglected, we can further perform the coarse-grained
approximation and obtain the Markovian rate equation

dsFS (t+ 7+ 7w, 9)

(81)

d
Pe ) = ~REPe (1) + RGP () (82)
with the coarse-grained decay rates
CG i N(t+1m)
Reg = ,\Il_wo N (T T 1m) f Reg (t) dt. (83)

It is easy to prove that in the zero-temperature case we have

e
f dt f dsgl(t - 9)ga(t, 9 + h.c.

= lim —
tr—oo F
e
= lim = f dt f ds g<+>(t-s)gA(t 9)|
tr—oo tE
= lim = dtH.(t)l‘P(O))| (84)
F—oo E
400
Q:Q)
200
oL
0 0.1 0.2 0.3 0.4 0.5

t (units of 1/w,g)

Figure6 (Color online) The decay rates(t) in eq. (78). Here we take the
measurement period= 0.1/wey. Other parameters are the same as the ones
in Figure 5. As proved in eq. (81), in the long-time limit thecdy rate is a
periodic function ofr. (Here we also take the limity = 0.) The disconti-
nuity of the functionRg(t) att = nr (n = 1,2, 3,...) is due to the jumping
behavior of the functioma (t, s) in eq. (72).
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with H, (t) and|¥(0)), defined in egs. (30) and (35). There-  The influence of the finite value cﬁgG can be observed
fore RSC at zero temperature is reduced to the short-time defrom the steady-state solution of the coarse-grained tata-e
cay rateRye{7) being defined in eq. (46). Namely, the de- tion (82), which describes the result of the long-time evo-
cay rate given by calculation for the short-time evolutitsoa  lution of the dissipative TLS under repeated measurements.
governs the long-time evolution when thffestive correla-  According to eq. (82), in the steady state, population proba
tion time 7 and the period of the measurements 7y is bilities P§' andPg' of the TLS in the ground and excited states
short enough. can be expressed as a function of the time interval the
Finally we discuss the behavior of the coarse-grained demeasurement:
cay rateRgG of the ground state. It is well-known that, for
a dissipative TLS without measurements, the decay rate of
the ground state is usually negligible in the zero-tempeeat
case. However, due to the counter-rotating terms of the

. . . _ . +) . .
Hamiltonian (20), the correlation funcuory% defined in Therefore, the non-zero decay ré@G of the ground state

(70) and the ground-state decay rate are not absolutely zer . . .
When the periodical measurements are performed, the valuﬁ:aeads to the non-zero population probabify of the excited

of the ground-state decay ra®&® is also varied by the mea- state.

surements, and can take significant value even in the zero- 10 _illustrate the ffects given by finiteRng,_ in Fig-
temperature. ures 7(a)-7(d) we plot the population probabilite with
For simplicity, we consider the simple cases with periodic "¢SPect to dferent values ofr and the decoherence factor

g o : .
identical measurements which have the decoherence factaf€ - AS in Figure 4, we take the noise spectrum in eq. (49).

yé? (y < 1), i.e., the cases discussed in sect. 5.1. Thdt is clearly shown that when becomes small, the probabil-

. " o t
straightforward calculation shows that in such a case thd Pe becomes non-2ero. In éhe limit— 0, P&’ approaches
coarse-grained decay rates are given by 1/2, which impliesRg® = RE®. In Figure 7 we also plot

PSt for the cases with phase modulation pulses rather than re-

G n Y peated measurements. The behavioP®fis quit similar to
Res (1) = fd”G(; + “’eg)h(%g =) smc2§, (85)  the one given by repeated measurements. The non-zero de-
cay rateRgG for the cases with phase modulation pulses is
where " stands forRS® and “-” for RSC. In the above  also obtained in refs. [39,40].
expressiony is length of the time interval between two mea-

RS | _« R5°(7)

St _ _
Pal) = Reein < RS’ ° T RES() + RES(r) D)

surements. The function and the spectrur® of the heat 0.50 0.50
bath are defined in egs. (48) and (47). \ (b) 6=n/2
Therefore, when there is no measurements, or in the limit  0.45 0.45 2
T — oo, we have the decay rates of ground state and excited Q'ov\
state a” 040 %° 0.40 SR
—y=0 0\,\
i - —v=0 y=03 'O,\
Rgg(‘r — ) = G (iweg) fdnh (v,0-17) smc’-g. (86) 035 "\ ;t:o.s 035) __y=08 N
v __.y=08 o PMP
. . i 030552 04 06 08 10 % 02 04 06 08 1.0
Since all the frequencies of the heat-bath are positive, we s of oy R
haveG (_Weg) =0and thengG(r — o) ~ 0. 7 (units of 1/weg) 7 (units of 1/wgg)
In the presence of periodic measurements, the decay rates 5, 0.50

RS are given by the overlap of the spectrt@r(n/r + a)eg) QUL 000 o () 6=3n72
and the functiorh (y, 8 — n) sinc®(5/2), or, roughly speaking, 0.45 \O\Q\Q 0.45 '
given by the values dB (/7 + weg) in the region; € [, 7. ) =7
We assume the functioB(x) takes nonzero value in the re- a° 040 " Q° 0.40 o
gionx € [0,Q]. ThenG (r]/T + weg) is nonzero only when 035 _zzoﬁ 035 _Z=0_3
N € [FweyT, FwegT + Q7]. Therefore, when the measurements U --y=08 Pl -- =08
are more frequent, or the time intervdbecomes smaller, the I RMP 030 ° RMP
non-zero region ofs (77/1' - weg) has more and more over- 0 02 04 06 08 10 0 02 04 06 08 10

7 (units of 1/wg) 7 (units of 1/w,g)

laps with the region{m, 7). Then the decay rateR;® can

be significant. In the limitr — 0, both of the two func-  Figure7 (Color online) The probabilitys! of the excited state of the TLS
tions G (r]/T + weg) take non-zero values only in a small re- in the steady-state. Here we plB§ given by eq. (88). We take the noise
gion around; = 0. Then we have spectrum in eq. (49) and illustrate the cases withg(&)0, (b)6 = m/2, (c)
6 = mand (d)d = 3rt/2, andy = 0 (blue solid line),y = 0.3 (green dashed
s line), y = 0.8 (black dashed-dotted line). In (b-d) we also plot the pbillig
Rg (r—>0)= RSG(T — 0) = h(y, 6) fdgG & . (87 PS! (red open circle) given by frequent phase modulation pulses
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6 Conclusion and discussion 7

In this paper we provide a complete dynamical model for the
evolution of dissipative TLS under repeated quantum non- g
demolition measurements. Our model gives an explanation
of QZE and QAZE without the wave function collapse pos- 9
tulation. The €&ects given by non-ideal measurements are
naturally obtained in our model. The QZE and QAZE given 10
by repeated phase modulation pulses can also be derived in
our framework as a special case of non-ideal measurement. 11

Based on our model, we derive the short-time decay
rate (39), which implies that the QZE and QAZE may be en- 12
hanced by a non-ideal measurement with a complex decoher-
ence factor. The long-time rate equation (67) is also obthin 13
in terms of the &ective time-correlation functioR (), which
describes the adjustment of the noise spectrum from the rel4
peated measurements. The rate equation also shows that, the
decay rate of the ground state of the TLS may be changed to®
non-zero value by the repeated measurements, and then the
steady-state probabilities of the ground state and theezkci
state are also varied. 17

The dfects of non-ideal measurements on QZE and QAZE
obtained in our model can be observed in the experiments
where the system-apparatus interactions are well coettoll
Such systems are possibly to be realized by nuclear magneti(ig
resonance or solid-state quantum devices. Although weillu
trate our model with a TLS, all the techniques in this paper
including the choice of the interaction picture in sect. ,2.3
the time-dependent perturbation theory in sect. 3, theenast ,;
equation (57) and the separation of the apparatuses in sect.
4.1, can be used in the cases other than TLS. Therefore oug,
model presented in this paper can also be straightforwardly
generalized to the discussions of QZE and QAZE of multi- 23
level quantum system.
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