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We provide a general dynamical approach for the quantum Zenoand anti-Zeno effects in an open quantum system under repeated
non-demolition measurements. In our approach the repeatedmeasurements are described by a general dynamical model without
the wave function collapse postulation. Based on that model, we further study both the short-time and long-time evolutions of
the open quantum system under repeated non-demolition measurements, and derive the measurement-modified decay rates of the
excited state. In the cases with frequent ideal measurements at zero-temperature, we re-obtain the same decay rate as that from
the wave function collapse postulation (Nature, 2000, 405:546). The correction to the ideal decay rate is also obtainedunder the
non-ideal measurements. Especially, we find that the quantum Zeno and anti-Zeno effects are possibly enhanced by the non-ideal
natures of measurements. For the open system under measurements with arbitrary period, we generally derive the rate equation for
the long-time evolution for the cases with arbitrary temperature and noise spectrum, and show that in the long-time evolution the
noise spectrum is effectively tuned by the repeated measurements. Our approach is also able to describe the quantum Zeno and
anti-Zeno effects given by the phase modulation pulses, as well as the relevant quantum control schemes.
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1 Introduction

Quantum Zeno effect (QZE) [1] and quantum anti-Zeno effect
(QAZE) [2] are among the most interesting results given by
quantum mechanics. The two effects describe the evolution
of a quantum system under repeated (or continuous) measure-
ments. QZE shows that, for a closed quantum system with
finite-dimensional Hilbert space, the unitary evolution can be
inhibited by the repeated measurements. Not surprisingly,the
similar inhibition can also occurs in the Rabi oscillation of a
quantum open system coupled with an environment.

On the other hand, for an unstable state in an open quantum
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system with dissipation, QZE shows that the time-irreversible
decay of such a state can be suppressed when the quan-
tum measurements are frequent enough. In addition to the
QZE in such an extreme limit, the decay rate of the unsta-
ble state in a dissipative system is also possible to be in-
creased if the measurements are repeated with an “interme-
diate” frequency. That is known as quantum anti-Zeno ef-
fect. QZE and QAZE have attracted much attention since
they were proposed. So far the two effects have been experi-
mentally observed in the systems of trapped ions [4,5], ultra-
cold atoms [6–8], molecules [9] and cavity quantum electric
dynamics (cavity QED) [10].

The QZE and QAZE were previously derived with the pos-
tulation of wave packet collapse in the quantum measure-
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ment. After the initial proposals of the two effects, many au-
thors have discussed the dynamical explanation of QZE and
QAZE via the unitary quantum mechanical approach without
wave packet collapse. For the unitary evolution of a closed
system or the Rabi oscillation of an open system, many au-
thors pointed out that the QZE in these systems can also be
explained in a dynamical approach [11–31]. These explana-
tions are based on the considerations of quantum dynamics
of the quantum system as well as the apparatus during the
measurements. In these complete dynamical analyses, QZE
can appear naturally during the evolution of the reduced den-
sity matrix of the system under the frequent interactions with
the apparatus, and the postulation of wave packet collapse
is not required. These explanations of QZE were previously
given for many special systems and set-ups for measurements
(e.g., two-level atoms under the detection with laser pulses).
Recently some of us provided a general dynamical proof of
QZE for any closed system under quantum non-demolition
measurements [30].

For the QZE and QAZE of the decay of an unstable state
in a quantum open system with dissipation, there are also
similar discussions in which the dynamical process of the
measurements is included [31–37]. In refs. [33–36], where
the quantum open system is also assumed to be under re-
peated measurements, the dynamics of every individual mea-
surement is discussed in detail. Nevertheless, in these ref-
erences the total survival probability of the initial stateof
the open system is just intuitively calculated as the prod-
uct of the one after each measurement, rather than derived
from the dynamical equation for the total evolution process.
This treatment is appropriate for the cases with ideal projec-
tive measurements. However, as we will show in sect. 3, in
the cases of general measurements which could be non-ideal,
a more first-principle analysis is required. There have also
been some full dynamical discussions of QZE and QAZE in
the limit of continuous measurement [31,36] (i.e., the cases
where the system keeps interacting with the measurement ap-
paratus during the total evolution time, or the time interval
between two measurements is much smaller than the dura-
tion time of each measurement) or the case of repeated mea-
surements [37]. However, in these discussions the measure-
ments are performed via several special physical systems,
rather than general apparatus. To our knowledge, so far there
has not been a general dynamical explaination for QZE and
QAZE of the unstable states in a quantum open system for ar-
bitrary environment spectrum, environment temperature and
system-apparatus coupling.

In this paper, we provide a general dynamical approach
for the QZE and QAZE of unstable states in a quantum open
system. For simplicity, we illustrate our central ideas with
a two-level system (TLS) coupled to a heat bath of a multi-
mode bosonic field. As pointed in sect. 4, it is straightfor-
ward to apply our model in open systems and environments
of other kinds.

In our approach, every measurement process is described

by the dynamical coupling between the quantum open sys-
tem and the apparatus. The postulation of wave function col-
lapse is not used. To describe the repeated measurements,
we use a multi-apparatus model that in each measurement,
the open system interacts with an individual apparatus [35],
while all the other apparatus are left alone. As proved in
sect. 2, regarding to the evolution of the density operator of
the quantum open system, this multi-apparatus model of re-
peated measurements is equivalent with the intuitive model
where all the measurements are given by the same appara-
tus and the state of this apparatus is initialized before each
measurement. We also point out, in our model there is no
special restriction on the details of the measurement process,
e.g., the coupling between the to-be-measured system and the
heat bath. To be more practical, we concentrate on the case
of “repeated measurements”, i.e., the duration time of each
measurement is much smaller than the time interval between
two measurements.

Using the multi-apparatus dynamical model of repeated
measurements, we completely investigate the effect of the
measurements on both the short-time and long-time evolution
of the TLS, and derive the QZE and QAZE in various cases.
For the short-time evolution, with time-dependent perturba-
tion theory, we obtain the short-time decay rate of the excited
state of the TLS, and show that when the TLS is under re-
peated ideal projective measurements, the short-time decay
rate given by our dynamical model is exactly the same as
the one from the wave packet collapse postulation [2]. In
the case of imperfect measurements, the corrections due to
the non-ideality and the finite duration time of the measure-
ments can also be naturally obtained. We prove that in the
case of non-ideal measurements, QZE also occurs when the
measurements are frequent enough.

For the long-time evolution of the TLS, we derive the rate
equation of the TLS by calculating the complete long-time
evolution of the TLS and the environment, rather than by re-
setting the state of the environment after each measurement.
Since the Markovian approximation is not applied, our rate
equation can be used for the cases of heat baths with arbi-
trary correlation time and the cases of measurements repeated
with arbitrary frequency. The rate equation clearly shows that
the spectrum of the noise is effectively tuned by the repeated
measurements. Especially, we show that when the measure-
ments are frequent enough, the time-local approximation and
coarse-grained approximation will be applicable. In this case,
at zero temperature, the decay rate given by the long-time
rate equation is the same as the short-time decay rate from
our short-time perturbative calculation in sect. 4. Further-
more, as a result of the counter-rotating terms in the coupling
Hamiltonian of the TLS and the heat bath, the decay rate of
the ground state of the TLS may be varied to a non-zero value
by the periodic measurements, even at zero temperature.

Our model is also able to describe the QZE or QAZE
given by periodic phase modulation pulses [38–40] rather
than measurements, since the former one can be considered
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as a special kind of non-ideal measurement with complex de-
coherence factor. Our calculation also provides a microscopic
or full-quantum theory for the recent proposals of stochastic
control of quantum coherence [41–43], where the repeated
projective measurements are semi-classically described as a
stochastic term in the Hamiltonian.

This paper is organized as follows. In sect. 2 we post our
multi-apparatus dynamical model for the repeated quantum
non-demolition measurements. In sect. 3 we show our dy-
namical description for the dissipative TLS under repeated
measurements. In sect. 4 we calculate the short-time decay
rate of the excited state of the TLS via time-dependent pertur-
bation theory, and discuss the effects given by non-ideal mea-
surements or phase modulation pulses on QZE and QAZE. In
sect. 5 we consider the long-time evolution of the system, de-
rive the effective noise spectrum experienced by the TLS and
obtain the rate equation for the long-time evolution at finite
temperature. There are some conclusions and discussions in
sect. 6.

2 Multi-apparatus for repeated measurements

In this paper, we discuss the quantum evolution of a dis-
sipative TLS under repeated quantum non-demolition mea-
surements. There are two possible models to describe the
repeated quantum measurements, i.e., the single-apparatus
model and the multi-apparatus model. In the single-apparatus
model, all the measurements are completed via the same ap-
paratus whose state is “initialized” to a special one in the be-
ginning of each measurement. In the multi-apparatus model,
each measurement is achieved by an individual apparatus
[35]. Namely, in every measurement, only one apparatus in-
teracts with the to-be-measured system while all the others
are left alone. In the recent experimental realization of QZE
in cavity QED [10], in every measurement the state of the
cavity field is measured by an individual ensemble of cold
atoms. It can be considered as an illustration of the multi-
apparatus model.

In the current section, we prove that, regarding to the evo-
lution of the to-be-measured system (in our case, it is the TLS
together with the heat bath), the two models are equivalent.
They can lead to the same evolution of the density matrix of
the to-be-measured system. For the convenience of our cal-
culation, in this paper we will use the multi-apparatus model
in our discussion for QZE and QAZE from the next section.

In the following we will first show the dynamical model of
a single quantum non-demolition measurement, and then do
the formal calculation for the evolution of the to-be-measured
system under repeated measurements with single-apparatus
and multi-apparatus model. Our result shows that the density
matrix of the to-be-measured system has the same time evo-
lution in both models. For the generality of our discussion,
in this section the to-be-measured system is assumed to be a
general multi-level quantum system. From the next section
we will focus on the system of TLS together with the heat

bath.

2.1 The dynamical model of a single quantum non-
demolition measurement

According to the dynamical theory of quantum non-
demolition measurements [44], the measurement process can
be described by the coupling between the to-be-measured
systemQ and the apparatusA. The total Hamiltonian ofQ
andA has an expression of conditional dynamics

HM =
∑

j=1

| j〉〈 j| ⊗ H j, (1)

whereH j is the Hamiltonian of the apparatusA with respect
to the jth eigenstate| j〉 of the observable of the open system.
Before the measurement, the systemQ can be in any super-
position state

∑

j=1 C j| j〉, while the apparatus is set in a pure
state|app〉. If the duration time of the measurement isτM , the
measurement leads to the transformation

∑

j=1

C j| j〉|app〉 →
∑

j=1

C j| j〉|A j〉, (2)

where
|A j〉 = e−iH jτM |app〉 (3)

is the finial state of the apparatus with respect to the state| j〉
of the systemQ. Therefore, in the more general case, if the
initial density matrix of the systemQ is ρQ, after the mea-
surement the density matrix ofQ becomes

L
[

ρQ
]

≡
∑

i, j

〈i|ρQ| j〉〈Ai|A j〉|i〉〈 j|. (4)

Then the effect of the quantum non-demolition measurement
on the to-be-measured systemQ can be described by the rel-
evant decoherence factors〈Ai|A j〉 in the definition (4) of the
super-operatorL.

2.2 The single-apparatus model of repeated measure-
ments

Now we consider the case of repeated measurements. As
shown in Figures 1(a) and 1(b), we assume the measure-
ment is performed once in every time region

[

t′n−1, tn
]

(n =
1, 2, . . . ; t′0 = 0) with durationτM . During the measurement,
the Hamiltonian of the systemQ and the relevant appara-
tus is HM . The length of the time intervals between every
two neighbor measurements is assumed to beτ. The system
evolves freely with HamiltonianHQ in the time between the
measurements.

In the single-apparatus model, all the measurements are
performed via the same apparatusA (Figure 1(a)). As shown
above, we assume the state of the apparatusA is initialized to
a given state|app〉 before every measurement, and the infor-
mation obtained byA from the last measurement is “erased”.
This initialization or erasing process can be done via switch-
ing on the interaction betweenA and an external reservoir
R, like the spontaneous emission of the two-level atom. The
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similar technique has also been used in our bang-bang cool-
ing scheme for the nano-mechanical resonator [45].

Now we consider the evolution of the density matrix ofQ
in the repeated-measurement process. At the initial timet′0,
the density matrix ofQ andA is

ρQA

(

t′0
)

= ρQ

(

t′0
)

|app〉〈app|. (5)

During the time region fromt′0 to t1, the first measurement is
performed via the interaction between the systemQ and the
apparatusA while the interaction betweenA and the reser-
voir R is switched off. As shown above, at the ending timet1
of the first measurement, the density matrix of the systemQ
becomes

ρQ (t1) = L
[

ρQ

(

t′0
)]

, (6)

where the super-operatorL is defined in eq. (4).
In the time region betweent1 and t′1, the Q-A interaction

is switched off. The systemQ experiences a free evolution
governed by the free HamiltonianHQ, while the apparatusA
and the reservoirR experiences a coupling which induces the
initialization of the state ofA. We denote the evolution oper-
ator given by theA-R coupling asuAR. Then we have the total
density matrixρT of Q, A andR at timet′1 as

ρT
(

t′1
)

= uFuARρT (t1) u†ARu†F (7)

with
uF = exp

[

−iHQτ
]

. (8)

It is pointed out that, sinceuF anduAR are the operators for
different systems, we have

[uF, uAR] = 0. (9)

Then we have the density matrix of the systemQ at timet′1

ρQ
(

t′1
)

= TrAR

[

uFuARρT (t1) u†ARu†F
]

= uFTrAR

[

uARρT (t1) u†AR

]

u†F

= uFρQ (t1) u†F
= UL

[

ρQ (t0)
]

(10)

with the super-operatorU defined asU [· · · ] = uF [· · · ] u†F.
On the other hand, the density matrix of the apparatusA at
time t′1 is given by

ρA
(

t′1
)

= TrQR

[

uARuFρT (t1) u†Fu†AR

]

= TrR

[

uARTrQ

[

uFρT (t1) u†F
]

u†AR

]

= TrR

[

uARρAR (t1) u†AR

]

= |app〉〈app| (11)

with the density matrixρAR (t1) of A andR at timet1:

ρAR (t1) = TrQ
[

ρT (t1)
]

. (12)

Measurement
with A

Measurement
with A

Measurement
with A

Measurement
with A

Free evolution of Q;

initialization of A

Free evolution of Q;

initialization of A

τM                          τM                          τM                                        τMτ τ

t'0=0 t1                                t'1   t2                               t'2    t3                                                 t'n−1  tn

Measurement
with A(1)

Measurement
with A(2)

Measurement
with A(3)

Measurement
with A(n)

Free evolution of Q; Free evolution of Q;

τM                          τM                          τM                                        τMτ τ

t'0=0 t1                                t'1   t2                               t'2    t3                                                 t'n−1  tn

(a)

(b)

Figure 1 (Color online) (a) The single-apparatus model of repeated mea-
surements. All the measurements are performed with the sameapparatusA.
Before every measurement the state ofA is initialized to a given state|app〉.
(b) Multi-apparatus model for repeated measurements. Eachmeasurement
is done with a individual apparatus with initial state|app〉.

In the last step, we have used the fact

TrR

[

uARρAR (t1) u†AR

]

= |app〉〈app|. (13)

Namely, theA-R coupling can make the density matrix ofA
to decay to the unique steady state|app〉〈app|, which is in-
dependent of the density matrix ofA at the timet1 before
the switching on of theA-R coupling. That “spontaneous-
emission-like process” is the physical explanation of the “ini-
tialization” of the apparatus state. Eq. (13) is applicablewhen
the influence of theA-R coupling on the reservoirR is negli-
gible in the total evolution from timet′0 to t′N . Then the den-
sity matrix ofQ andA at the beginning timet′1 of the second
measurement becomes

ρQA
(

t′1
)

= ρQ
(

t′1
)

|app〉〈app|, (14)

which has the same form as the oneρQA (t0) at the beginning
of the first measurement. Therefore we can straightforwardly
generalize our above discussion to the time aftert′1. Finally
we have the density matrix of the systemQ at the timet′n after
n measurements andn free evolutions:

ρQ
(

t′n
)

= (UL)n [

ρQ (t0)
]

. (15)

2.3 The multi-apparatus model of repeated measure-
ments

Now we consider the multi-apparatus model for the repeated
measurements. In this model we assume there are many in-
dividual apparatusA(1), A(2), . . ., each of which is in the same
state|app〉 before the measurements. In themth measurement
in the time region [t′m−1, tm], the systemQ only interacts with
the mth apparatusA(m), and leave the other apparatus alone.
In the time interval between two measurements, the evolution
of Q is also governed by the same HamiltonianHQ. Never-
theless, the initialization of the state of the apparatus isnot
required in this multi-apparatus model (Figure 1(b)).
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At the beginning timet′0 of the first measurement, the den-
sity matrix ofQ andA(1) is

ρQA(1)

(

t′0
)

= ρQ

(

t′0
)

|app〉〈app|. (16)

At the time t1, after the first measurement, the density ma-
trix of the systemQ is alsoL[ρQ(t′0)]. At time t′1, the density
matrix of Q is

ρQ
(

t′1
)

= uFρQ (t1) u†F =UL
[

ρQ

(

t′0
)]

. (17)

Therefore, at the beginning timet′1 of the second measure-
ment, the density matrix ofQ and the apparatusA(2) is

ρQA(2)
(

t′1
)

= ρQ (t1) |app〉〈app| (18)

with the same form asρQA(1)(t′0). Then at timet′n after thenth
measurements we also have the density matrix ofQ

ρQ
(

t′n
)

= (UL)n
[

ρQ

(

t′0
)]

. (19)

That is the same as the one (15) given by the single-apparatus
model.

Therefore, the single-apparatus and multi-apparatus model
for the repeated measurements can lead to the same evolution
(19) of the to-be-measured systemQ. If we only consider the
evolution of the systemQ under the repeated measurements,
we can use either single-apparatus model or multi-apparatus
model in our calculation. In our discussion in the following
sections, the systemQ includes the TLS and the heat bath
which is coupled to the TLS in the time region of free evolu-
tion. We will use the multi-apparatus model to describe the
repeated measurements periodically performed on the TLS.

3 Repeated measurements about two level sys-
tem

3.1 System and measurements

In the above section we post our multi-apparatus model for
the repeated quantum measurements. From this section, we
show our dynamical approach for the QZE and QAZE of a
dissipative TLS under repeated measurements.

We consider a TLS coupled with a heat bath which is de-
scribed as a multi-mode bosonic field. The Hamiltonian of
the total system is

HF = ωeg|e〉
(S )〈e| +

∑

k

ω~ka†kak

+ |e〉(S )〈g|
∑

k

(

gkak + g∗ka†k
)

+ h.c.. (20)

Here |g〉(S ) and |e〉(S ) are the ground and excited states of
the TLS,a†k and ak are respectively the creation and anni-
hilation operators of the boson in thekth heat-bath mode
with frequencyωk, while gk is the relevant coupling inten-
sity between the boson and the TLS. In our HamiltonianHF,

the rotating wave approximation is not used so that the pos-
sible effects given by the counter-rotating terms can be in-
cluded [46,47].

In this paper we consider the evolution of such a dis-
sipative TLS under repeated measurements. As shown in
the above section, we use the multi-apparatus model to de-
scribe the repeated measurements. We also assume the
nth measurement is performed in the time region [t′n−1, tn]
(n = 1, 2, . . . ; t′0 = 0) with the duration timeτM (Fig-
ures 2(a) and 2(b)). The time intervals between two neigh-
bor measurements are also assumed to have the same length
τ. In these time intervals between the measurements, the
system evolves freely under HamiltonianHF. In the multi-
apparatus model, we assume there are many apparatuses
A(1), . . . , A(n), . . . which can be individually coupled with the
TLS and distinguish between the states|e〉(S ) and |g〉(S ). In
this paper we denote| 〉(S ) for the quantum state of the TLS,
| 〉(B) for the state of the heat bath,| 〉(n) for the state of the
nth apparatusA(n) and | 〉(A) for the state of all the appara-
tus. Before the measurement, every apparatus is initially in a
pure state. During thenth measurement, the TLS is coupled
with the nth apparatusA(n) and decoupled with all the other
apparatusesA(m,n).

As shown in sect. 2, in the quantum non-demolition mea-
surements the coupling between the system and the apparatus
A(n) has an expression of conditional dynamics:

H(n)
M = |e〉

(S )〈e| ⊗ H(n)
e + |g〉

(S )〈g| ⊗ H(n)
g , (21)

whereH(n)
e (H(n)

g ) is the Hamiltonian of the apparatusA(n)

with respect to the state|e〉(S )
(

|g〉(S )
)

of the TLS. In this pa-
per, we assume the duration timeτM of the measurement is so
small that the interaction between the TLS and the heat bath
and the decay of the excited state can be neglected during the
measurement.

In thenth measurement, if the state of the TLS before the
measurement isα|e〉(S ) +β|g〉(S ), and the state of apparatusAn

is |app〉(n), then the transformation given by the measurement
can be described as

(

α|e〉(S )
+ β|g〉(S )

)

|app〉(n)

→ αe−iωegτM |e〉(S )
|Ae〉

(n)
+ β|g〉(S )

|Ag〉
(n)

with |Ag〉
(n) and|Ae〉

(n) the states of the apparatus attached to
the ground and excited states of the TLS

|Ag,e〉
(n) = e−iH(n)

g,eτM |app〉(n). (22)

The ideality of the measurement is described by the overlap
of the states|Ag〉

(n) and|Ae〉
(n) or the decoherence factor

γneiθn = (n)〈Ae|Ag〉
(n); γn, θn ∈ Reals. (23)

In the case of ideal projective measurement, these two states
are orthogonal to each other and we haveγn = 0.
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Figure 2 (Color online) (a) The multi-apparatus model of the repeated
quantum measurements of a dissipative TLS. In each measurement, the TLS
is coupled with an individual apparatus and leaves other apparatus alone.
The nth measurement occurs in the time region betweent′n−1 and tn. The
TLS is also coupled with the heat bath. (b) The time sequence of repeated
measurements and free evolution governed byHF defined in (20). (c) The
definitions of the functionsΓn(t) andΛn(t).

3.2 The total Hamiltonian in the interaction picture

Under our above assumptions, the quantum evolution of the
total system including the TLS, the heat bath and the appara-
tuses is governed by the time-dependent Hamiltonian

H (t) = ωeg|e〉
(S )〈e| +

∑

k

ωka†kak +
∑

n

H(n)
M Γn (t)

+
(

|e〉(S )〈g| + |g〉(S )〈e|
)















∑

k

gkak + h.c.















∑

n

Λn (t) ,

(24)

where the functionsΓn (t) andΛn (t) are defined as in Fig-
ure 2(c):

Γn (t) =

{

1, t ∈
[

t′n−1, tn
]

,

0, otherwise,
(25)

and

Λn (t) =

{

1, t ∈
[

tn, t′n
]

,

0, otherwise.
(26)

To solve the quantum evolution of our system, we use the
interaction picture where the quantum state|Ψ (t)〉I is defined
as

|Ψ (t)〉I = exp

[

i
∫ t

0
H0

(

t′
)

dt′
]

|Ψ (t)〉. (27)

Here|Ψ (t)〉 is the state of the total system in the Schrödinger
picture andH0 is given by

H0 (t) = ωeg|e〉
(S )〈e| +

∑

k

ωka†kak +
∑

n

H(n)
M Γn (t) . (28)

In the interaction picture, the quantum state|Ψ (t)〉I satisfies
the Schrödinger equation

i
d
dt
|Ψ (t)〉I = HI (t) |Ψ (t)〉I (29)

with the HamiltonianHI (t) given by

HI (t) = |e〉(S )
〈g| f̂B (t) f̂A (t) + h.c., (30)

where the operatorŝfB (t) and f̂A (t) are defined as

f̂B (t) =
∑

k

(

gkake−i∆~k t + g∗ka†kei(ωeg+ωk)t
)

, (31)

f̂A (t) =
∑

n=1

Λn (t) Mn. (32)

Here the detuning∆k takes the form

∆k = ωk − ωeg (33)

and the unitary operatorMn is given by

Mn =

n
∏

l=1

exp
[

iH(l)
e τM

]

exp
[

−iH(l)
g τM

]

. (34)

With the help of the interaction picture, the effect of the
measurements is packaged in the definition of the operator
Mn. As shown below, in this interaction picture our calcula-
tions are significantly simplified and we can express all the
effects from the measurements in terms of the decoherence
factorγneiθn defined in eq. (23). In the following two sections
we will derive the short-time and long-time evolutions of the
TLS with the calculations in this interaction picture.

4 Short-time evolution: First-order perturba-
tion theory

In this section we calculate the short-time decay rate of the
excited state|e〉(S ) of the TLS under repeated measurements.
For simplicity, we only consider the zero-temperature case
where the initial state of our system att = t′0 = 0 as

|Ψ (0)〉I = |e〉
(S )
|vac〉(B)

∏

m

|app〉(m), (35)

where |vac〉(B) is the vacuum state of the bosonic field and
|app〉(m) the initial state of themth apparatus. We consider the
evolution of the system fromt = 0 to a finial timet = tF,



200 Zhang P,et al. Sci China-Phys Mech Astron February (2014) Vol. 57 No. 2

which, for simplicity is assumed to be an integer multiple of
the periodτ + τM of the measurements.

The finial state|Ψ (tF)〉I of the total system is the solution
of the Schrödinger equation (29). It can be expressed as a
functional series ofHI(t):

|Ψ (tF)〉I =

(

1− i
∫ tF

0
HI (t) dt + · · ·

)

|Ψ (0)〉I . (36)

The survival probabilityPe (tF) of the state|e〉(S ) is given by

Pe (tF) = 1− I〈Ψ (tF) |(|g〉(S )〈g|)|Ψ (tF)〉I . (37)

We can define the short-time decay rateR(τ, tF) of |e〉(S ) as

Pe (tF) = 1− R(τ, tF)tF. (38)

Therefore,R (τ, tF) can also be expressed as a functional se-
ries of HI(t). When the total evolution timetF is small
enough, we can only keep the lowest-order term (in our prob-
lem it is the second-order term) ofHI(t) in R(τ, tF). Then we
have the short-time decay rate

R(τ, tF) ≈
τ2

tF

∑

k

|gk|
2sinc2 (∆kτ/2)

×

















N + 2
N

∑

m=1

m−1
∑

n=1

Re















ei(n−m)∆~k(τ+τM )
m

∏

l=n+1

γle
iθl































,

(39)

where

N =
tF
τ + τM

. (40)

In the case of ideal projective measurements with negli-
gible duration time orτM = 0, we haveγl = 0 and then
the short-time decay rateR(τ, tF) in eq. (39) becomes atF-
independent one:

R(τ, tF) = Rpro (τ) = τ
∑

k

|gk|
2sinc2 (∆kτ/2) , (41)

which is the result given by ref. [2] with the postulation of
wave function collapse. Therefore, the QZE or QAZE based
on the ideal decay rateRpro (τ) can also be obtained with our
model.

In the case of periodic non-ideal measurements, if the com-
mon upper limit of the moduluiγn of the decoherence factors
in the measurements are smaller than unit, i.e.,γn 6 γmax < 1
for anyn, then eq. (39) gives

R(τ, tF) 6 τ
∑

k

|gk|
2

(

1+
2γmax

1− γmax

)

sinc2

(

∆kτ

2

)

. (42)

Therefore, for a fixed value of the total evolution timetF, we
have

lim
τ→0

R(τ, tF) = 0. (43)

This means that, in the cases of non-ideal measurements with
γmax < 1, the QZE also occurs in the limit that the measure-
ments are frequent enough.

In refs. [33–36], the authors have calculated the total sur-
vival probability Pe (tF) as the product of the one after each
measurement, i.e., the relationship

P(tF) = P(τ)N (44)

is assumed. This simplification yields that the short-time de-
cay rateR(τ, tF) is the one in a single period of measurement,
or

R(τ, tF) = R(τ, τ). (45)

In our case ofτ ≫ τM , eq. (45) leads toR(τ, tF) = Rpro (τ).
Therefore, the intuitive treatments (44) and (45) are reason-
able in the cases of ideal measurements withγn = 0, and
required to be improved to eq. (39) for the cases of non-ideal
measurements and non-zeroγn.

4.1 The effect given by non-ideal measurements

To further explore the physical meaning of the short-time de-
cay rate given by eq. (39), we consider the simple case with
identical non-ideal measurements. In this case the decoher-
ence factorγneiθn takesn-independent valueγeiθ (γ < 1). In
the largeN limit with N ≫ 1/(1 − γ), eq. (39) gives atF-
independent short-time decay rate:

R(τ, tF) ≈ Rmea(τ)

≡

∫

dηG
(

η

τ
+ ωeg

)

h (γ, θ − η) sinc2η

2
. (46)

Here we have used the approximationτ/(τ + τM) ≈ 1. In
the above expression the spectrum functionG (ω) of the heat
bath is defined as

G(ω) =
∑

k

|gk|
2 δ(ω − ωk) (47)

and the functionh (γ, x) is given by

h (γ, x) =
1− γ2

1+ γ2 − 2γ cosx
. (48)

It is obvious that, in the caseγ = 0 we haveh (0, x) = 1
and the decay rateRmea(τ) in eq. (46) returns to the result
Rpro (τ) given by ideal projective measurements. In the case
of repeated non-ideal measurements, the functionh (γ, θ − η)
on the right hand side of eq. (46) would tune the shape of
the function to be integrated and then change the value of
Rmea(τ).

In Figure 3 we plot the functionh (γ, θ − η) with respect to
different values of decoherence factorγeiθ. It is easy to prove
that h (γ, θ − η) takes peak value at the pointsη = θ + 2nπ
(n = 0,±1, . . .) with the width of the order of arccosγ. There-
fore, the effects given byh (γ, θ − η) on the decay rateRmea(τ)
in eq. (46) seriously depend on the values of bothγ andθ.
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To illustrate these effects, we calculate the decay rate
Rmea(τ) of a TLS in an environment with noise spectrum

G(ω) = GH(ω) ≡



















ω
(

1+
(

ω
ωc

)2
)4 , ω > 0,

0, ω < 0,
(49)

which is, up to a global factor, the same as the noise spectrum
of the 2p-1s transition of the hydrogen atom [48,49]. As in
the case of realistic hydrogen atom, here we also takeωc =

549.5ωeg. The decay ratesRmea(τ) with θ = 0,π/2,π, 3π/2
and various values ofγ are shown in Figure 4.

Our results show that, with any values ofγ andθ, the short-
time decay rateRmea(τ) approaches to zero in the limitτ→ 0.
That is, the QZE always occurs when the measurements are
repeated frequently enough. This is consistent with the con-
clusion in eq. (42). On the other hand, in the limitτ → ∞,
Rmea(τ) approaches to the natural decay rateRGR given by the
Fermi golden rule:

RGR = 2πG
(

ωeg

)

. (50)

Therefore, the quantum Zeno and anti-Zeno effects only oc-
cur whenτ is small enough.

When the phaseθ = 0, as shown in Figure 4(a), both the
QZE and QAZE can also appear even when the decoherence
factor γ is nonzero. However, when the value ofγ or non-
ideality of the measurements is increased, the region ofτ for
the appearance of QZE and QAZE becomes narrower. That
is, in the case of largeτ, the QZE and QAZE with largeγ
are always less significant than the ones with smallγ. In this
sense the two effects are suppressed by the non-ideal mea-
surements with real decoherence factors.

For the cases of non-zero phaseθ, the effects given by the
non-ideal measurements are from both the non-zero value
of γ and the repeated phase modulation given by the phase
factor eiθ. As shown in Figures 4(b)–4(d), the final behavior
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Figure 3 (Color online) The functionh(γ, θ − η) defined in eq. (48). Here
we plot the curves withγ = 0.3, θ = 0 (green line with open circle);
γ = 0.5, θ = 0 (pink dashed line);γ = 0.8, θ = 0 (black solid line) and
γ = 0.8, θ = 2π/3 (red dotted line). It is clearly shown that the position of
the peak ofh(γ, θ − η) is determined by the value ofθ, while the width of
the peak decreases whenγ is increased. As a comparison, we also plot the
function sinc2(η/2) (blue dashed dotted line).
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Figure 4 (Color online) The short-time decay rateRmea(τ) defined in
eq. (46) of a dissipative TLS under repeated measurements. Here we take
the noise spectrum in eq. (49) and illustrate the cases withθ = 0 (a),θ = π/2
(b), θ = π (c), θ = 3π/2 (d) andγ = 0 (blue solid line),γ = 0.3 (green
dashed line),γ = 0.8 (black dashed-dotted line). We also plotRmea(τ) (red
open circle) defined in eq. (51) given by frequent phase modulation pulses
with approximation (53).

of Rmeasensitively dependents onθ. Especially, with specific
values ofθ andγ, the non-ideal measurements can enhance
either QZE or QAZE. Both theτ-region where the QZE oc-
curs and the peak value of the decay rate in the QAZE can be
enlarged by the complex value of the decoherence factorγeiθ.
Finally, the total region ofτ for the occurrence of QZE and
QAZE with non-zeroγ is possible to be the same as the one
for the cases ofγ = 0, or even larger than the latter. That is
due to the complicated behavior of the functionh (γ, θ − η).

4.2 The quantum Zeno and anti-Zeno effect given by
phase modulation pulses

As shown in the above subsection, in the cases of non-ideal
measurements withγ , 0, both the QZE and QAZE can pos-
sibly to be enhanced in the cases with nonzero phase shiftθ

in each measurement. Actually in the most extreme cases of
γ = 1, the two effects can also appear with nonzero phase
θ. In that case, the measurements are reduced to the phase
modulation pulses which can induce periodical jumps for the
relative phase between|e〉(S ) and|g〉(S ). The QZE and QAZE
given by the phase modulation pulses have been discussed
in refs. [39,40] in detail. Here we show that our dynamical
model is also able to describe these effects.

If the pulse is repeatedly performed with periodτ and neg-
ligible duration timeτM , then the short-time decay rate in
eq. (39) becomes

R(τ, tF) = RPMP(τ)
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≡

∫

dηG
(

η

τ
+ ωeg

)

g (θ − η) sinc2
(

η

2

)

, (51)

where the functiong(x) is defined as

g (x) =
1
N

sin2 (Nx/2)

sin2 (x/2)
. (52)

This result is essentially equivalent with the one in refs. [39,
40].

From now on we assume the functionG(ω + ωeg) has a
finite width∆ω, i.e.,G(ω + ωeg) takes nonzero value only in
the region−∆ω < ω < ∆ω. Under this assumption, when
the evolution timetF is large enough so that 2π/tF is much
smaller than the width∆ω, we have

g(x) ≈ 2π
∞
∑

n=−∞

δ (x + 2nπ) . (53)

If the periodτ of the pulses is short enough so thatτ < π/∆ω

and

G(−π/τ + ωeg) = G(π/τ + ωeg) ≃ 0, (54)

the functionG(η/τ+ωeg) is localized in the region−π < η <
π. Then the simplification (53) implies

RPMP ≈ 2πG
(

θ

τ
+ ωeg

)

sinc2
(

θ

2

)

+ 2πG

(

θ

τ
−

2π
τ
+ ωeg

)

sinc2
(

θ

2
− π

)

, (55)

where we have assumedθ ∈ [0, 2π]. In this case, as a
result of eq. (54), one can further find some specialθ̃ so
that θ̃/τ − 2π/τ < −∆ω and θ̃/τ > ∆ω, which makes
G(θ̃/τ +ωeg) ∼ G(θ̃/τ − 2π/τ+ωeg) ∼ 0 orRPMP ∼ 0. There
are also other special anglesθ∗ which makesG(θ∗/τ + ωeg)
or G(θ∗/τ − 2π/τ + ωeg) take the maximum valueGmax of
G (ω). Therefore, the decay rateRPMP can be tuned in the
broad region between 0 and some maximum value which is
of the order of 2πGmax. This tuning effect is also predicted in
refs. [39,40].

We also point out that, in the limitγ → 1 the function
h (γ, x) in the last subsection has the same behavior

h (γ→ 1, x) ≈ 2π
∞
∑

n=−∞

δ (x + 2nπ) (56)

asg(x) in the largeN limit. Therefore the results in eq. (51)
for 2π/tF << ∆ω can also be obtained from eq. (46).

In Figure 4 we also plot the short-time decay rateRPMP un-
der approximation (53) with the spectrum (49) and different
values of the angleθ. It is shown that, whenγ is close to
unit the short-time decay rateRmea in eq. (46) is quite close
to RPMP. In this case the behavior of the short-time decay rate
is dominated by the repeated phase modulation.

5 The long-time evolution: Rate equation

In the above section we have considered the short-time evo-
lution of the dissipative TLS under repeated measurements
or phase modulation pulses. We obtain the short-time de-
cay rates via perturbative calculation based on our pure dy-
namical model of repeated measurements. The perturbative
approach is simple and straightforward. Nevertheless, there-
sults are only applicable when the total evolution timetF is
short.

In this section, we go beyond the short-time calculation
and consider the long-time evolution of the TLS under re-
peated measurements. The problem with projective measure-
ments has been considered in refs. [41–43] in a semi-classical
approach with measurements described by a stochastic term
in the Hamiltonian. Here we provide a full-quantum theory
which can be used for the cases of either ideal or non-ideal
measurements. The previous results [39,40] on the long-time
evolution of a dissipative TLS under repeated phase modula-
tion pulses can also be derived in our approach.

For simplicity, here we assume the measurements are iden-
tical with the decoherence factorγeiθ. We first deduce the
general form of the rate equation of the TLS in terms of the
effective time-correlation function of the environment, and
then derive the simplified form of the rate equation under the
time-local and coarse-grained approximation.

5.1 The general rate equation and effective time-
correlation function of the environment

To derive the rate equation for the TLS, we first consider the
TLS and the apparatuses as a total system interacting with the
heat bath. The evolution of the density matrixρ(S A) of such a
combined system can be described by master equation given
by Born approximation (eq. (9.26) of ref. [50]):

d
dt
ρ(S A) (t)

= −

∫ t

0
dsTrB

[

HI (t) ,
[

HI(s), ρ(S A)(s) ⊗ ρ(B)
]]

, (57)

whereHI (t) is defined in eq. (30) andρ(B) is the initial density
matrix of the heat bath, which is assumed to be in the thermal
equilibrium state at temperatureT . It is pointed out that, in
eq. (57) we do not perform the Markovian approximation.

The evolution equation for the density matrixρ(S ) (t) of the
TLS can be obtained by tracing out the states of the appara-
tuses in eq. (57). According to eq. (30), in the calculation we
need to evaluate the values of

TrA

[

f̂A (t) f̂ †A (s) ρ(S A) (s)
]

, (58)

TrA

[

f̂A (s) f̂ †A (t) ρ(S A) (s)
]

, (59)

TrA

[

f̂ †A (t) f̂A (s) ρ(S A) (s)
]

, (60)

TrA

[

f̂ †A (s) f̂A (t) ρ(S A) (s)
]

(61)
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with s 6 t. Noting that the product of̂fA (t) ( f̂ †A (t)) and f̂A (s)
( f̂ †A (s)) is nonzero only when there exist integersnt andns so
thatΛnt (t) = Λns(s) = 1 or

∃ nt, ns, so thatt ∈
[

t′nt
, tnt

]

; s ∈
[

t′ns
, tns

]

. (62)

When this condition is satisfied, we separate all the appara-
tuses into two groups:

X : {the apparatusesA1, A2, . . . , Ans}

Y : {the apparatusesAns+1, Ans+2, . . .}

Obviously,X is the group of the apparatuses which interact
with the system before the times, while Y includes the ones
interact with the system after the times. Therefore the den-
sity matrixρ(S A) (s) can be written as

ρ(S A) (s) = ρ(S X) (s) ρY
0 , (63)

whereρ(S X) (s) is the reduced density matrix of the TLS to-
gether with the apparatuses in the groupX, andρY

0 is given
by

ρY
0 =

∞
∏

m=ns+1

|app〉(m)〈app|. (64)

On the other hand, eqs. (31), (32) and (34), together with the
conditions 6 t, yield

f̂A (t) f̂ †A (s) =
nt

∏

l=ns+1

exp
[

iH(l)
e τM

]

exp
[

−iH(l)
g τM

]

. (65)

Namely, the operator̂fA (t) f̂ †A (s) only operates on the state
of the apparatus in the groupY. Then the quantity in eq. (58)
can be obtained as

TrA

[

f̂A (t) f̂ †A (s) ρ(S A) (s)
]

= ρ(S ) (s) TrA

[

f̂A (t) f̂ †A (s) ρY
0

]

. (66)

It can be calculated easily with the simple form in eq. (64)
of ρY

0 . The terms in eqs. (59)–(61) can be evaluated in the
similar approach.

Then we get the rate equation

d
dt

Pe (t) = −
∫ t

0
dsF(+)

AB (t, s) Pe (s)

+

∫ t

0
dsF(−)

AB (t, s) Pg (s) , (67)

wherePe (t) =(S ) 〈e|ρ(S )(t)|e〉(S ) and Pg (t) = 1 − Pe (t) are
the probabilities of the excited and ground states of the TLS.
In the cases of sect. 4 where the initial state of the TLS is
assumed to be|e〉, the Pe (t) defined here becomes the sur-
vival probability defined in (37). In eq. (67), the effective
time-correlation functionsF(±)

AB (t, s) of the environment are
defined as

F(±)
AB (t, s) = 2Re

[

g(±)
B (t − s) gA (t, s)

]

, (68)

where the bare correlation-functionsg(±)
B of the heat bath are

given by

g(+)
B (t − s) = TrB

[

f̂B (t) f̂ †B (s) ρ(B)
]

=
∑

k

|gk|
2
[

(nk + 1) e−i∆k(t−s) + nkei(ωk+ωeg)(t−s)
]

, (69)

g(−)
B (t − s) = TrB

[

f̂ †B (t) f̂B (s) ρ(B)
]

=
∑

k

|gk|
2
[

nkei∆k(t−s) + (nk + 1) e−i(ωk+ωeg)(t−s)
]

(70)

with nk = TrB[a†kakρ
(B)] the average number of the boson in

thekth mode of the heat bath. The correlation-function of the
measurements is defined as

gA (t, s) = TrA

[

f̂A (t) f̂ †A (s) ρY
0

]

. (71)

It is easy to prove that, the functionsgA (t, s) andg(±)
B (t − s)

decrease when the absolute value of|t − s| increases. Whent
ands satisfy the condition (62) we have

gA (t, s) = γ(nt−ns)ei(nt−ns)θ. (72)

If the condition (62) is violated we havegA (t, s) = 0.
The rate equation (67) shows that, the evolution of the

probabilitiesPe,g (s) of the excited and ground states of the
TLS is governed by the time-correlation functionsF(±)

AB (t, s),
which are given by both the time-correlation function of the
heat bath and the decoherence factors of the measurements.
The measurements tune the correlation functionF(±)

AB (t, s)
through the functiongA (t, s). Especially, the trail ofF(±)

AB (t, s)
in the long-time-interval region with large|t − s| would be
suppressed by the factorγ(nt−ns) in the functiongA (t, s) de-
fined in eq. (72).

To illustrate the effects given by the repeated measure-
ments to the effective correlation functionF(±)

AB (t, s), in Fig-
ure 5 we plotF(+)

AB (t, 0) for a TLS in a zero-temperature envi-
ronment with Ohmic spectrum

G (ω) = GO (ω) = ωe−ω/ωc . (73)

It is clearly shown that the increasing of the frequency of the
measurements, or the decreasing of the time intervalτ be-
tween measurements, can lead to the suppression of the long-
time trail of F(+)

AB (t, 0).
One important parameter for the correlation function

F(±)
AB (t, s) is the effective correlation timeτF, which gives

F(±)
AB (t, s) ≃ 0 for |t − s| > τF. If τF is small enough so that the

variation of the probabilitiesPe (t) andPg (t) is negligible in
the time intervalτF, we can perform the time-local approxi-
mation

Pe,g (s) ≈ Pe,g (t) (74)

in eq. (67) and significantly simplify the rate equation.
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Figure 5 (Color online) The effective time-correlation functionF(+)
AB (t, 0)

defined in eq. (68) of the environment of a dissipative TLS under repeated
measurements. Here the heat bath is assumed to be at zero temperature with
Ohmic spectrum (73), whereωc = 500ωeg. The incoherence factor of the

non-ideal measurements isγ = 0.5 andθ = 0. We plot the behaviors ofF(+)
AB

with the measurement periodτ = 0.003/ωeg (blue line with open diamond),
0.005/ωeg (red line with open square), 0.01/ωeg (black line with open trian-
gle) and 0.1/ωeg (green line). It is clearly shown that the long-time trail of

F(+)
AB (t, 0) is suppressed by the frequent measurements with smallτ. We also

take the limitτM = 0.

Eq. (68) yields

τF = min {τA, τB} , (75)

whereτA and τB are the correlation times of the functions
gA (x) andg(±)

B . From eq. (72) we have

τA ∼ (1− 1/ lnγ) (τ + τM) . (76)

In the case of ideal projective measurements we haveτA =

τ+τM . Therefore, eq. (75) shows that frequent measurements
with small periodτ can reduce the effective correlation-time
of the environment experienced by the dissipative TLS.

5.2 The master equation under time-local and coarse-
grained approximation

In the following we assume the effective correlation timeτF
is small enough and the time-local approximation (74) can be
used. Then the rate equation (67) can be simplified as

d
dt

Pe (t) = −Re (t) Pe (t) + Rg (t) Pg (t) , (77)

where the time-dependent decay ratesRe (t) and Rg (t) are
given by

Re,g (t) =
∫ t

0
dsF(±)

AB (t, s) . (78)

On the other hand, eq. (72) implies that

gA (t, s) = gA (t + τ + τM , s + τ + τM ) . (79)

This relationship, together with the definitions ofF(±)
AB (t, s),

gives

F(±)
AB (t, s) = F(±)

AB (t + τ + τM , s + τ + τM) . (80)

Therefore, whent is much longer than the effective correla-
tion timeτF, we have

Re,g (t) =
∫ t

0
dsF(±)

AB (t, s)

=

∫ t

0
dsF(±)

AB (t + τ + τM , s + τ + τM)

=

∫ t+τ+τM

τ+τM

dsF(±)
AB (t + τ + τM , s)

≈

∫ t+τ+τM

0
dsF(±)

AB (t + τ + τM , s)

= Re,g (t + τ + τM) , (81)

and then the decay rates become periodic functions oft with
periodτ + τM , which is the same as the period of the mea-
surements. In Figure 6 we plot theRe (t) for the system in the
calculation of Figure 5. The periodic behavior ofRe,g (t) in
the larget case is illustrated clearly.

If the measurements are frequent enough so that the vari-
ation of the probabilitiesPe,g (t) in the time intervalτ + τM
can be neglected, we can further perform the coarse-grained
approximation and obtain the Markovian rate equation

d
dt

Pe (t) = −RCG
e Pe (t) + RCG

g Pg (t) (82)

with the coarse-grained decay rates

RCG
e,g = lim

N→∞

1
N (τ + τM)

∫ N(τ+τM)

0
Re,g (t) dt. (83)

It is easy to prove that in the zero-temperature case we have

RCG
e = lim

tF→∞

1
tF

∫ tF

0
dt

∫ t

0
dsg(+)

B (t − s)gA(t, s) + h.c.

= lim
tF→∞

1
tF

∫ tF

0
dt

∫ tF

0
ds

[

g(+)
B (t − s)gA(t, s)

]

= lim
tF→∞

1
tF

∣

∣

∣

∣

∣

∣

∫ tF

0
dtHI (t)|Ψ(0)〉I

∣

∣

∣

∣

∣

∣

2
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Figure 6 (Color online) The decay rateRe(t) in eq. (78). Here we take the
measurement periodτ = 0.1/ωeg. Other parameters are the same as the ones
in Figure 5. As proved in eq. (81), in the long-time limit the decay rate is a
periodic function ofτ. (Here we also take the limitτM = 0.) The disconti-
nuity of the functionRe(t) at t = nτ (n = 1,2, 3, . . .) is due to the jumping
behavior of the functiongA (t, s) in eq. (72).
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with HI(t) and |Ψ(0)〉I defined in eqs. (30) and (35). There-
fore RCG

e at zero temperature is reduced to the short-time de-
cay rateRmea(τ) being defined in eq. (46). Namely, the de-
cay rate given by calculation for the short-time evolution also
governs the long-time evolution when the effective correla-
tion time τF and the period of the measurementsτ + τM is
short enough.

Finally we discuss the behavior of the coarse-grained de-
cay rateRCG

g of the ground state. It is well-known that, for
a dissipative TLS without measurements, the decay rate of
the ground state is usually negligible in the zero-temperature
case. However, due to the counter-rotating terms of the
Hamiltonian (20), the correlation-functionsg(±)

B defined in
(70) and the ground-state decay rate are not absolutely zero.
When the periodical measurements are performed, the value
of the ground-state decay rateRCG

g is also varied by the mea-
surements, and can take significant value even in the zero-
temperature.

For simplicity, we consider the simple cases with periodic
identical measurements which have the decoherence factor
γeiθ (γ < 1), i.e., the cases discussed in sect. 5.1. The
straightforward calculation shows that in such a case the
coarse-grained decay rates are given by

RCG
e,g (τ) =

∫

dηG
(

η

τ
± ωeg

)

h (γ, θ − η) sinc2η

2
, (85)

where “+” stands forRCG
e and “−” for RCG

g . In the above
expression,τ is length of the time interval between two mea-
surements. The functionh and the spectrumG of the heat
bath are defined in eqs. (48) and (47).

Therefore, when there is no measurements, or in the limit
τ → ∞, we have the decay rates of ground state and excited
state

RCG
e,g (τ→ ∞) ≈ G

(

±ωeg

)

∫

dηh (γ, θ − η) sinc2η

2
. (86)

Since all the frequencies of the heat-bath are positive, we
haveG

(

−ωeg

)

= 0 and thenRCG
g (τ→ ∞) ≈ 0.

In the presence of periodic measurements, the decay rates
RCG

e,g are given by the overlap of the spectrumG
(

η/τ ± ωeg

)

and the functionh (γ, θ − η) sinc2(η/2), or, roughly speaking,
given by the values ofG

(

η/τ ± ωeg

)

in the regionη ∈ [−π,π].
We assume the functionG(x) takes nonzero value in the re-
gion x ∈ [0,Ω]. ThenG

(

η/τ ± ωeg

)

is nonzero only when
η ∈ [∓ωegτ,∓ωegτ+Ωτ]. Therefore, when the measurements
are more frequent, or the time intervalτ becomes smaller, the
non-zero region ofG

(

η/τ − ωeg

)

has more and more over-

laps with the region [−π,π]. Then the decay ratesRCG
g can

be significant. In the limitτ → 0, both of the two func-
tionsG

(

η/τ ± ωeg

)

take non-zero values only in a small re-
gion aroundη = 0. Then we have

RCG
g (τ→ 0) = RCG

g (τ→ 0) ≈ τh(γ, θ)
∫

dξG (ξ) . (87)

The influence of the finite value ofRCG
g can be observed

from the steady-state solution of the coarse-grained rate equa-
tion (82), which describes the result of the long-time evo-
lution of the dissipative TLS under repeated measurements.
According to eq. (82), in the steady state, population proba-
bilities Pst

g andPst
e of the TLS in the ground and excited states

can be expressed as a function of the time intervalτ of the
measurement:

Pst
g (τ) =

RCG
e (τ)

RCG
e (τ) + RCG

g (τ)
; Pst

e =
RCG

g (τ)

RCG
e (τ) + RCG

g (τ)
. (88)

Therefore, the non-zero decay rateRCG
g of the ground state

leads to the non-zero population probabilityPst
e of the excited

state.

To illustrate the effects given by finiteRCG
g , in Fig-

ures 7(a)–7(d) we plot the population probabilitiesPst
e with

respect to different values ofτ and the decoherence factor
γeiθ. As in Figure 4, we take the noise spectrum in eq. (49).
It is clearly shown that whenτ becomes small, the probabil-
ity Pst

e becomes non-zero. In the limitτ → 0, Pst
e approaches

1/2, which impliesRCG
g = RCG

e . In Figure 7 we also plot
Pst

e for the cases with phase modulation pulses rather than re-
peated measurements. The behavior ofPst

e is quit similar to
the one given by repeated measurements. The non-zero de-
cay rateRCG

g for the cases with phase modulation pulses is
also obtained in refs. [39,40].
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Figure 7 (Color online) The probabilityPst
e of the excited state of the TLS

in the steady-state. Here we plotPst
e given by eq. (88). We take the noise

spectrum in eq. (49) and illustrate the cases with (a)θ = 0, (b) θ = π/2, (c)
θ = π and (d)θ = 3π/2, andγ = 0 (blue solid line),γ = 0.3 (green dashed
line), γ = 0.8 (black dashed-dotted line). In (b-d) we also plot the probability
Pst

e (red open circle) given by frequent phase modulation pulses.
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6 Conclusion and discussion

In this paper we provide a complete dynamical model for the
evolution of dissipative TLS under repeated quantum non-
demolition measurements. Our model gives an explanation
of QZE and QAZE without the wave function collapse pos-
tulation. The effects given by non-ideal measurements are
naturally obtained in our model. The QZE and QAZE given
by repeated phase modulation pulses can also be derived in
our framework as a special case of non-ideal measurement.

Based on our model, we derive the short-time decay
rate (39), which implies that the QZE and QAZE may be en-
hanced by a non-ideal measurement with a complex decoher-
ence factor. The long-time rate equation (67) is also obtained
in terms of the effective time-correlation functionF(±)

AB , which
describes the adjustment of the noise spectrum from the re-
peated measurements. The rate equation also shows that, the
decay rate of the ground state of the TLS may be changed to
non-zero value by the repeated measurements, and then the
steady-state probabilities of the ground state and the excited
state are also varied.

The effects of non-ideal measurements on QZE and QAZE
obtained in our model can be observed in the experiments
where the system-apparatus interactions are well controlled.
Such systems are possibly to be realized by nuclear magnetic
resonance or solid-state quantum devices. Although we illus-
trate our model with a TLS, all the techniques in this paper,
including the choice of the interaction picture in sect. 2.3,
the time-dependent perturbation theory in sect. 3, the master
equation (57) and the separation of the apparatuses in sect.
4.1, can be used in the cases other than TLS. Therefore our
model presented in this paper can also be straightforwardly
generalized to the discussions of QZE and QAZE of multi-
level quantum system.
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