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Theory of degenerate three-wave mixing using circuit QED in solid-state circuits
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We study the theory of degenerate three-wave mixing and the generation of squeezed microwaves using circuit
quantum electrodynamics in solid state circuits. The Hamiltonian for degenerate three-wave mixing, which
seemed to be given phenomenologically in quantum optics, is derived by quantum mechanical calculations.
The nonlinear medium needed in three-wave mixing is composed of a series of superconducting charge qubits
which are located inside two superconducting transmission-line resonators. Here, the multiqubit ensemble is
present to enhance the effective coupling constant between the two modes in the transmission-line resonators. In
the squeezing process, the qubits are kept in their ground states so that their decoherence does not corrupt the
squeezing. The main obstacle preventing a large squeezing efficiency is the decay rate of the transmission-line
resonator.
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I. INTRODUCTION

Squeezed states provide a good example of the interplay
between experiment and theory in the development of quantum
mechanics [1]. The possibility of using squeezed states in
quantum communication and of applying squeezed states to
the study of fundamental quantum phenomena as well as to
detecting gravitational radiation has been recognized [2–6].
Degenerate three-wave mixing and four-wave mixing are the
two main means used to generate squeezed light in quantum
optics [7,8]. In condensed matter physics, the theoretical
study and experimental demonstration of the generation of
squeezed microwaves via degenerate four-wave mixing have
been successfully accomplished by using a Josephson junction
parametric amplifier [9–11].

Recently, there has been significant progress in simulating
quantum optics phenomena in superconducting solid state
electrical circuits; the so-called circuit quantum electro-
dynamics (circuit QED). The strong couplings between a
one-dimensional superconducting transmission-line resonator
(TLR) and a superconducting charge qubit, an LC oscillator,
and a superconducting flux qubit have been experimen-
tally realized [12,13]. Many phenomena in quantum optics
and quantum mechanics, such as dressed states, sideband
transitions, single-atom lasing, the Berry phase, and the
photon bunching effect, have been observed in circuit QED
[14–19]. The experiment of resolving photon number states
indicates that the coupling in circuit-QED systems can achieve
the extremely-strong-coupling limit [20]. Recent progress
in experiments [21–23] showed the potential to extend the
coupling between the boson mode and few qubits to mul-
tiqubits. On the other hand, in our previous paper [24], we
considered the possibility of creating quantum entanglement
of two electron spins by coupling them simultaneously to
a many-spin ensemble. It was discovered that the effective
coupling constant was increased by a factor of

√
N when an

electron spin was coupled with an ensemble of N nuclear
spins. Similar enhanced coupling is also expected and has
already been confirmed experimentally [21] in the case of

the interaction between a boson mode and a many-spin
ensemble.

Based on these experimental advances [25], it is possible to
obtain strong nonlinear interactions in circuit-QED systems. A
phase-preserving amplifier based on the nonlinear interaction
was proposed and realized to improve its performance in the
regime near the quantum limit [26]. More recently, there
have been promising efforts to realize squeezed states of
nanomechanical resonators [27–30] and microwaves using
circuit QED [31,32]. As is well known, a nonlinear medium is
indispensable to generate squeezed states. In quantum optics,
theory of and experiments in degenerate three-wave mixing
are well developed for generating squeezed states [33–35].
However, in text books for quantum optics [1,36,37], the
degenerate three-wave mixing Hamiltonian seems to be given
phenomenologically. Motivated by the strong nonlinearity, we
study in this paper the theory of degenerate three-wave mixing
to generate squeezed microwaves using circuit QED. The
system considered consists of two one-dimensional supercon-
ducting TLRs and a series of superconducting charge qubits to
enhance the effective coupling constant between two bosonic
modes. The nonlinear medium needed in three-wave mixing
can be constructed by the series of superconducting charge
qubits, the artificial two-level atoms, without an external
biased flux [38]. The nonlinear Hamiltonian for three-wave
mixing is derived by quantum mechanical calculations through
the Fröhlich-Nakajima transformation [39]. The nonlinear
interaction constant depends on the frequencies of the qubit
and the pump microwave field. A large nonlinear interaction
strength can be obtained with current experimental techniques.
The squeezing efficiency is mainly dependent on the quality
factor of the superconducting TLR, which is also the case in
nonlinear optical cavity experiments.

This paper is organized as follows: In the next section,
the physical setup is described in detail and the effective
Hamiltonian is obtained by means of the Fröhlich-Nakajima
transformation. In Sec. III, the squeezing effect is analyzed
with and without the noise. Finally, the main results are
summarized in Sec. IV.
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FIG. 1. (Color online) Schematic of combined system consisting
of two superconducting TLRs and a series of superconducting charge
qubits. The first TLR, shown at the bottom, is coupled to the charge
qubits through the gate capacitances C(j )

g . The second TLR, shown
at the top, is coupled to the charge qubits through magnetic field
induced by its quantized current. Here, the j th qubit is placed at x(j )

a

with respect to the first TLR, where the quantized voltage is maximum
and the quantized current is zero. Meanwhile, it is also placed at x

(j )
b

with respect to the second TLR, where the quantized current reaches
a maximum and the quantized voltage vanishes.

II. MODEL

Our proposed circuit QED system is schematically illus-
trated in Fig. 1. A series of superconducting charge qubits
are fabricated inside two one-dimensional superconducting
TLRs. In the charge representation, the Hamiltonian of a single
superconducting charge qubit is [40]

Hq = −1

2
EC(1 − 2ng)σz − EJ cos

(
π

�e

�0

)
σx, (1)

where

EC = 2e2

C�

(2)

is the single Cooper-pair charging energy with a total capaci-
tance C� = 2CJ + Cg , the Josephson junction capacitance is
CJ , the gate capacitance is Cg , EJ is the Josephson coupling
energy,

ng = CgVg

2e
(3)

is the gate charge induced by the gate voltage Vg , and �e

is the externally applied flux. For a charge qubit located
inside the first TLR, the quantized voltage of the first TLR
also applies to the gate capacitance Cg of the charge qubit.
The coupling between the qubit and the second TLR comes
from the quantized flux, which is induced by the quantized
current in the second TLR, through the effective area s of
the superconducting quantum interference device (SQUID)
configuration. At the antinodes, the quantized voltage and
current in the first and second TLR take their maximum
amplitudes [25]:

Vq =
∑

k

V
(k)

0 (a†
k + ak), (4)

Iq = −i
∑

k

I
(k)
0 (b†k − bk), (5)

respectively, with

V
(k)

0 =
√

h̄ω
(1)
k

L1c1
, (6)

I
(k)
0 =

√
h̄ω

(2)
k

L2l2
. (7)

Here,

ω
(i)
k = kπ

Li

√
lici

(8)

is the frequency of the kth mode in the ith TLR (i = 1, 2)
with Li , li , and ci being the length, the inductance, and the
capacitance per unit length, respectively. The quantized flux
induced by the quantized current in the second TLR is

�q = μ0sIq

2πd
, (9)

with d being the distance between the qubit and the second
TLR. At a sufficiently low temperature, there is only one mode
for each TLR, say ω

(1)
k = ωa and ω

(2)
k = ωb, that couples to the

qubit. Located at the point

xa = naπ

ωa

√
l1c1

(na = 0,1, . . . ,ka) , (10)

where the quantized voltage

Vq = V0(a† + a) (11)

in the first TLR is maximum, the qubit is only capacitively
coupled to mode a for the quantized current and thus the flux
vanishes. Similarly, since the qubit is simultaneously placed
at the point

xb =
(
nb + 1

2

)
π

ωb

√
l2c2

(nb = 0,1, . . . ,kb) , (12)

with the maximum quantized current in the second TLR, it is
only inductively coupled to mode b with quantized flux

�q = −iφb(b† − b) (13)

applied to the SQUID’s effective area because of the vanishing
quantized voltage. The Hamiltonian of the joint system reads
(h̄ = 1)

H1 = ωaa
†a + ωbb

†b − 1

2
Ec(1 − 2ng)σz

−EJ cos
π (�e + �q)

�0
σx + eCgV0

C�

(a† + a)σz, (14)

where �e and �0 = h/(2e) are respectively the external
biased flux and the flux quantum. Besides, because mode a is
capacitively coupled to the qubit, the polarization of its electric
field is in the coplane of the TLR. And the polarization of the
magnetic field of mode b is perpendicular to the plane since it
interacts with the qubit by the magnetic flux through the loop
enclosed by the qubit.

We set the external biased flux at the special value �e = 0;
that is, the external biased flux is turned off. To second order
in �q/�0, the effective Josephson coupling energy is
−EJ [1 − π2�2

q/(2�2
0)], which has a quadrature dependence
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on �q . Now we choose the eigenenergy basis of the qubit;
namely,

|g〉 = cos

(
θ

2

)
|0〉 + sin

(
θ

2

)
|1〉, (15)

|e〉 = cos

(
θ

2

)
|1〉 − sin

(
θ

2

)
|0〉 (16)

to simplify the total Hamiltonian in Eq. (14). Here,

θ = tan−1

[
2EJ

Ec(1 − 2ng)

]
(17)

is the mixing angle. Under the rotating-wave approximation,
the Hamiltonian in Eq. (14) can be rewritten as

H2 = ωaa
†a +ωbb

†b − 1
2	ρz + gaa

†ρ− + gbb
†2ρ− + H.c.,

(18)

where

	 =
√

E2
c (1 − 2ng)2 + 4E2

J (19)

is the transition frequency of the qubit,

ga = −eCgV0

C�

sin θ (20)

and

gb = −EJ π2φ2
b

2�2
0

cos θ (21)

are the coupling coefficients between the qubit and the first
and second TLRs, respectively, and

ρz = |g〉〈g| − |e〉〈e|, (22)

ρ+ = ρ
†
− = |e〉〈g|. (23)

In our circuit-QED system, the distance between two
arbitrary neighboring qubits is set large enough so that there
is no direct interaction between them, and each qubit is placed
at the points where the amplitudes of the quantized voltage
of the first TLR and the quantized current of the second TLR
take their maximum values [41]. Then, the total Hamiltonian
of our considered system reads

Ht = ωaa
†a + ωbb

†b − 1

2
	

N∑
j=1

ρ(j )
z

+
N∑

j=1

(
g(j )

a a†ρ(j )
− + g

(j )
b b†2ρ

(j )
− + H.c.

)
, (24)

where for simplicity we have assumed that the transition
frequencies of all qubits are the same. In the above Hamilto-
nian, we have used the rotating-wave approximation. Under
certain conditions, the counter-rotating terms may lead to
observable effects [42]. In order to get the effective interaction
Hamiltonian of the two TLRs, we have to eliminate the
degrees of freedom of the qubits. Here, we adopt a canon-
ical transformation—the Fröhlich-Nakajima transformation
[39,42,43], which has been widely used in condensed matter
physics—to eliminate the variables of qubits.

Our system works in the large-detuning regime; that is,

|�a| ≡ |	 − ωa| �
√∑

j

g
(j )2
a , (25)

|�b| ≡ |	 − 2ωb| �
√∑

j

g
(j )2
b . (26)

In this regime, the two TLRs do not change the populations
of the qubits but only result in Stark shifts in the qubits’
energy levels [44–46]. Therefore, the effective interaction
Hamiltonian of the two TLRs can be obtained by keeping
all of the qubits in their ground states, which can be easily
implemented by current experimental techniques [40,41].
Applying a unitary transformation

U = exp

[ ∑
j

(
g

(j )
a

�a

a†ρ(j )
− + g

(j )
b

�b

b†2ρ
(j )
− − H.c.

)]
(27)

to the Hamiltonian in Eq. (24), we obtain an effective
Hamiltonian

H � ωaa
†a + ωbb

†b − κ(ab†2 + a†b2), (28)

where

κ = −
∑

j

g(j )
a g

(j )
b

�a + �b

2�a�b

(29)

is the nonlinear coupling constant between the two TLRs. In
the case of

ωa = 2ωb = 2ω, (30)

in the interaction picture, the above Hamiltonian becomes

HI = κ(ab†2 + a†b2). (31)

III. SQUEEZING

In the parametric approximation, the pump microwave field
is treated classically and pump depletion is neglected. The
Hamiltonian in Eq. (31) becomes

V = κβ(b†2e−iϕ + b2eiϕ), (32)

where β and ϕ are the real amplitude and phase of the coherent
pump microwave field. The evolution operator on the state of
the second TLR is

S(ξ ) = exp

[
−i

ξ

2
(b†2e−iϕ + b2eiϕ)

]
, (33)

where

ξ = 	pt, (34)

and 	p = 2κβ is the effective Rabi frequency. This is a squeez-
ing operator on the second TLR with squeezing parameter ξ .
For the phase of the coherent pump microwave field ϕ = π/2,
it can be calculated directly by using the transformation

S†(ξ )bS(ξ ) = b cosh ξ − b† sinh ξ, (35)

where the variance in one of the quadratures

X1 = 1
2 (b† + b) (36)
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decreases exponentially:

�X1 =
√〈

X2
1

〉 − 〈X1〉2 = �X1(0)e−ξ . (37)

In order to obtain a better squeezing efficiency, one would
like a larger nonlinear interaction coupling. For the experi-
mentally realizable parameters ω/(2π ) = 10 GHz, 	/(2π ) =
1010 to 103 Hz, EJ /(2π ) = 4 GHz, s/d = 20 μm, V0 = 2 μV,
Cg/C� = 0.1, φb/�0 = 5 × 10−5, β = 10, and N = 5, the
nonlinear coupling constant κ/(2π ) is about 5.72 MHz and
the effective Rabi frequency 	p/(2π ) is about 114.4 MHz.
Here, for the sake of a sufficiently large κ , we tune the level
spacing of the qubits 	 very close to ω (i.e., the frequency of
mode b), which can be feasibly achieved by adjusting the gate
voltage V

(j )
g applied on the qubits.

Following the standard quantum theory of damping, we
investigate the influence of the decoherence of the system on
the squeezing efficiency. In order to include the influence of
the qubits, we use the master equation [1]

d�

dt
= − i

h̄
[H ,�] + 1

2
γn(2b�b† − b†b� − �b†b)

+ 1

2

∑
j

γ (j )
q (2ρ

(j )
− �ρ

(j )
+ − ρ

(j )
+ ρ

(j )
− � − �ρ

(j )
+ ρ

(j )
− )

+
∑

j

γ (j )
ϕ

(
ρ(j )

z �ρ(j )
z − �

)
, (38)

where � is the density matrix of the combined system of the
qubits and the second TLR,

γn = ω

Q
(39)

and Q are the the decay rate and quality factor, respectively, of
the second TLR, and γ

(j )
q and γ

(j )
ϕ are the relaxation rate and

dephasing rate of the qubits, respectively. The Hamiltonian
form is chosen as

H = κβ

N
(b†2e−iϕ + b2eiϕ)

∑
j

ρ(j )
z (40)

to include all sources of decoherence and dissipation of the
qubits and TLR. For convenience of computation, we assume
all γ

(j )
q and γ

(j )
ϕ are equal, and Eq. (38) becomes

d�

dt
= − i

h̄
[H ,�] + 1

2
γn(2b�b† − b†b� − �b†b)

+γq

2

∑
j

(2ρ
(j )
− �ρ

(j )
+ − ρ

(j )
+ ρ

(j )
− � − �ρ

(j )
+ ρ

(j )
− )

+γϕ

∑
j

(
ρ(j )

z �ρ(j )
z − �

)
. (41)

In the numerical simulation, we truncate the number
of levels in mode b as high as 256. Moreover, in order
to guarantee its validity, we double the truncation number
and find that the result converges. In Fig. 2, we plot the
time dependence of the variance �X1(t)/�X1(0). We have
chosen the following conservative experimental parameters
[12,13,20]: γq = 1 MHz, γϕ = 10 MHz, and Q = 5 × 105. At
the temperature T = 20 mK, the initial state of the second
TLR is in a thermal equilibrium state and the qubits are in
their ground states. Furthermore, since the effective coupling
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FIG. 2. (Color online) Time dependence of �X1(t)/�X1(0).
There is a minimum due to the fluctuation in the system.

between the qubit and mode a is enhanced by a factor β,
which is the square root of the average photon number in
mode a, it requires |�a| � βg

(j )
a in order for the drive not to

modify the population distribution in the qubit [47]. It has been
numerically confirmed that, with the parameters mentioned
above, the derivation from all population in the ground state is
no more than 2%. As a consequence, the approximation of all
qubits in the ground state is valid.

Due to the influence of noise in the system, there is a
minimum in �X1(t)/�X1(0). This means the dissipation
and decoherence may corrupt the squeezing effect severely.
The squeezing effect may be destroyed eventually when the
squeezing time is long enough. In order to investigate what
is the main factor that affects the squeezing efficiency, we
numerically calculate the dependence of �X1Min/�X1(0) on
γq , γϕ , and γn. However, we find that the minimum of �X1

does not vary when γq and γϕ are changed. It is easy to
understand that the qubits are always kept in their ground states
and play the role of the nonlinear medium in the squeezing
process. In Fig. 3, we plot the minimum of �X1 versus the

0 10 20 30 40 50 60 70 80 90 100
0.152
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∇

FIG. 3. (Color online) Minimum of �X1/�X1(0) versus the
decay rate γn of the second TLR. The red squares are obtained by
numerically solving Eq. (41) with γq = 1 MHz and γϕ = 10 MHz.
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FIG. 4. (Color online) Time dependence of −X2
2(t). Although it

increases with time at the early stage due to the uncertainty relation,
there is a maximum which ensures the limited expansion of Josephson
energy.

decay rate of the second TLR. As expected, the minimum of
�X1 increases with decreasing TLR quality factor.

In obtaining the Hamiltonian (18), we approximated
the Josephson energy to second order in �q/�0, which
is proportional to X2 = i(b† − b)/2. Since there is the
uncertainty relation governing the time evolution of both X1

and X2 (i.e., �X1�X2 � 1/2), it is reasonable to question
the validity of the limited expansion given above. However,
as shown in Fig. 4, there is a finite maximum for the time
evolution of −�X2

2 due to the nonvanishing minimum of
�X1. Therefore, it is both the finite maximum of −�X2

2
and the small coefficient φb/�0 = 5 × 10−5 that ensure the
validity of the approximation.

The superconducting charge qubits, playing the role of the
nonlinear medium, are kept in their ground states, and we
do not apply any operations or measurements on the them
in the squeezing process. As a result, the decoherence of the
qubits does not affect the squeezing efficiency, which has been
verified by our numerical solution of Eq. (41). In order to
obtain a large squeezing efficiency, we just need to improve
the quality factor of the TLR. Our numerical results in Fig. 2
are similar to the analytical results of Ref. [48] in which
the initial state of the signal mode is chosen as the vacuum
state.

On the other hand, in the above calculation, we have
assumed a fixed phase of the driving field, (i.e., ϕ = π/2).
However, in a realistic experiment, the phase may be a random
number distributed around some mean due to the noise. In
order to take this factor into consideration, we apply the
quantum Monte Carlo method [49] to the stochastic process, in
which ϕ is normally distributed around π/2 with variance σ 2.
As shown in Fig. 5, the squeezing effect still emerges, although
the minimum of �X1 increases as the variance increases.
Meanwhile, the time to reach the minimum is significantly
delayed. This observation is consistent with the previous
study [50], which clarified the role of phase noise in the cooling
process of nanomechanical resonators [51].
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σ(units of 0.05 π)

FIG. 5. (Color online) Minimum of �X1 (green squares) and the
time t to reach the minimum (red circles) for different σ .

In the above discussions, we have proposed an experimental
setup for the generation of the squeezed state in the TLR.
In order to verify our scheme, it is necessary to detect
the squeezed state mentioned above after it is generated.
Recently, a two-mode squeezed state has been observed in
the microwave-frequency domain [52]. Enlightened by this
progress, we provide a detection scheme for the generated
squeezed state. The above signal is input into a high-electron-
mobility transistor (HEMT). Then, the signal is mixed with a
local oscillator tone at the same frequency as mode b. Every
few ns, the voltages are digitized with an analog-to-digital
converter. By means of a field programable gate array, we
digitally filter the data with a sinc Chebyshev filter function
f (�). Therefore, microwave photons with frequency in this
window are linearly detected. Afterwards, two quadrature
components are extracted from a digital data processing
about the results of two operators (i.e., x + ip = b + ih† and
x − ip = b† − ih). Here, bout = ∫ ∞

−∞ d�f (�)b(�) and h is
the noise annihilation operator mainly due to the HEMT
amplifier noise. Finally, the noise can be extracted with the
relation 〈X2

1〉 = 〈x2〉on − 〈x2〉off + 1/4, where the subscripts
“on” and “off” refer to mode b being on or off. Besides,
another scheme based on a microwave quantum homodyne
measurement technique is also competent for measuring the
variance �X1 [53].

IV. DISCUSSIONS AND CONCLUSION

In summary, we have studied the theory of degenerate
three-wave mixing by using circuit quantum electrodynam-
ics in superconducting solid state circuits. We derived the
Hamiltonian for degenerate three-wave mixing which seemed
to be given phenomenologically in text books for quantum
optics. Therefore, we provide a possible microscopic model
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for the three-wave mixing. Our results may be helpful for
understanding degenerate three-wave mixing in quantum
optics. The nonlinear coupling constant κ is controllable and
dependent on the frequencies of the TLRs and the qubits.
We investigated the generation of squeezed state using three-
wave mixing. The main obstacle preventing large squeezing
efficiency is the decay rate of the TLR. Since the qubits are kept
in their ground states and play the role of a nonlinear medium,
their decoherence does not affect the squeezing efficiency.
Furthermore, due to the

√
N -enhanced coupling between the

field and the qubits, our scheme requires much less time to
reach the maximum squeezed state with comparison to the
scheme with only one qubit [31].

Note added in proof. Recently, we have learned that the
microscopic theory of nonlinear polarizabilities already exists
in books concerning nonlinear optics (see, e.g., Ref. [54]).
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