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Abstract Anyons can be used to realize quantum computation, because they are two-level systems in two dimensions.
In this paper, we propose a scheme to simulate single-qubit gates and CNOT gate using Abelian anyons in the Kitaev
model. Two pairs of anyons (six spins) are used to realize single-qubit gates, while ten spins are needed for the CNOT
gate. Based on these quantum gates, we show how to realize the Grover algorithm in a two-qubit system.
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1 Introduction

Anyons are exotic quasi-particles in two dimensions,

of which the statistical characteristics are quite differ-

ent from those of bosons and fermions. The model of

anyons, which obeys fractional statistics, was put forward

by Wilczek.[1−4] However, anyons are not only a theoret-

ical model but they can be also experimentally detected,

i.e., the fractional quantum Hall effect.[4−7] They are two-

level systems with the ground state and the excited state.

When we braid two different kinds of anyons, there will

be an additional phase factor in the wave function, which

is determined by the winding number and the statistical

parameter. Moreover, anyons can only be created in pairs.

Due to their special characteristics, they have been applied

to many fields. For instance, high-Tc superconductivity[8]

and fault-tolerant topological quantum computing.[9−10]

The study of anyons and Gentile statistics particles has

attracted lots of interests recently.[11−21]

So far the models of anyons are concerned, there is a

famous spin lattice model proposed by Kitaev, namely the

first Kitaev model.[22−23] It is not only exactly solvable in

theory but can also be realized in experiment. In this

model, there is a spin on each edge, as shown in Fig. 1.

The ground state and the excited state are the two rele-

vant states in this model. The excited particles are created

in pairs. There are four super-selection sectors in the Ki-

taev model, i.e., 1 (the vacuum), e (electric charge), m

(magnetic vortices) and ε = e×m. When a Pauli-Z oper-

ation is applied to an edge spin, particles e are created on

the two vertices linked to the spin. When a Pauli-X oper-

ation is performed on an edge spin, particlesm are created

in the two connected plaquettes. Furthermore, when two

different particles are braided with each other, the addi-
tional phase is generated. For example, when a particle m
goes around a particle e for one circle, the wave function
possesses a π phase. Since the statistical parameter is 1/2,
they are called 1/2-anyons as well.

Fig. 1 The first Kitaev spin lattice model with spins
located in the center of an edge. Anyons are excited on
the vertices and faces. Here, the vertex (v) is the cross
of four edges labeled in red. And the face (f) is enclosed
by four edges labeled in green.

As shown in Fig. 2, six spins are enough to show
the braiding operation of anyons.[24−25] The statistics of
anyons was displayed in photonic quantum simulator[24]

and cold atoms controlled by dynamic laser[25] as well.
Both of these experiments demonstrated that the phase
factor of anyons in the braiding operation can be detected.
In this paper, in the light of Refs. [24–25], we use Abelian
anyons in the Kitaev model to realize quantum gates. Fur-
thermore, in virtue of these gates, we propose a scheme to
implement the Grover algorithm.[26]
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This paper is organized as follows. In Sec. 2, we simu-

late single-qubit gates using Abelian anyons in the Kitaev

model. In Sec. 3, we show how to put the CNOT gate

into practice by the same model. Then, in Sec. 4, by

virtue of the above gates, we present a scheme for real-

izing the Grover algorithm. At the end of this paper, a

brief summary is concluded in Sec. 5.

Fig. 2 Six-spin Kitaev model taken from Ref. [24].
There are six spins labeled from 1 to 6 and four faces
labeled as f1, f2, f3, and f4, respectively.

2 Single Qubit Quantum Gates

As shown in Fig. 1, anyons are excited on the vertices

and faces, and they can only be generated in pairs.[22−23]

The Hamiltonian of the first Kitaev model is[22−23]

H = −
∑

vertices

Av −
∑

plaquettes

Bf , (1)

where

Av =
∏

j∈ star (v)

Xj , (2)

Bf =
∏

j∈ plaquettes (f)

Zj (3)

are stabilizer operators, which commute with each other.

Here, Xj , Yj , and Zj are the Pauli operators for j-th

boundary spin. Both Av and Bf have two eigenvalues

with +1(−1) corresponding to the ground (excited) state,

respectively. As shown in Fig. 2, six spins are the mini-

mum number of spins to demonstrate the braiding statis-

tics of anyons.[24−25] The Hamiltonian H6 and its ground

state |ψ6〉 for the case with six spins have been given in

Ref. [24]. Here, we also utilize six spins (four anyons) in

order to simulate single-qubit quantum gates. And we use

|0〉 (= |ψ6〉) and |1〉 to denote the ground state and the ex-

cited state, respectively. For the ground state, there is no

particle created. For the excited state, a pair of e particles

can be created on the two vertices connected with spin 3.

There are two kinds of basic operations in need. One is

the braiding of anyons, while the other is
√
Z rotation.

To show the effect of the
√
Z operation explicitly,

we plot Fig. 3. It can be considered as a rotating in

the Hilbert space spanned by the two states |0〉 and |1〉.
When

√
Z rotation is performed on the ground state

|0〉, it becomes (|0〉 + |1〉)/
√

2. When we apply it to

the excited state |1〉, we obtain a different superposition
(−|0〉 + |1〉)/

√
2. In other words,

√
Z operation is a rota-

tion of 45◦ counterclockwise. For the braiding operation,

when we braid two different kinds of anyons, the wave

function attains an additional phase factor exp(i2πkα)

with k being the winding number and α being the sta-
tistical parameter.[6−7] In contrast, if two anyons of the

same kind are braided, there is no such phase created.

Fig. 3 The effect of
√

Z rotation.

2.1 Pauli-Z Gate

In order to simulate single-qubit operations in the Ki-
taev model, there are six spins needed as shown in Fig. 2.

First of all, we introduce the steps for Pauli-Z gate since

it is the simplest case in our method. We only need two

steps to simulate it.

(i) Perform X operation on spin 4.
(ii) Apply three X operations on spins 6, 5, and 3 in

turn.

In the above procedures, X , Y , and Z are the Pauli

operations for the single spin. In step one, a pair ofm par-
ticles are generated on plaquettes f1 and f3. In step two,

when an X operation is applied to spin 6, there are two

m particles created on f3 and f4. Due to the fusion law,

two m particles created on the same vertex cancel.[22] Af-

terwards, the same operation is performed on spins 5 and
3 sequentially.

The effect of step two will be explained explicitly as

follows. If the state is initially the ground state |0〉, it will

remain at the ground state without an additional phase
since there are no e particles on the both vertices con-

nected to spin 3. In contrast, if the state is initially pre-

pared in the excited state |1〉, it will stay at the same state

with an extra phase factor exp(i2π × 1/2) = −1 for the

sake of two e particles on the both vertices linked to spin
3.

In all, a Pauli-Z gate is realized by means of the above

two steps.
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2.2 Pauli-X Gate

In combination with an additional step, we will show

how to simulate Pauli-X gate as follows.
(i) Perform X operation on spin 4.
(ii) Apply three X operations to spins 6, 5, and 3 in

turn.
(iii) Operate Z on spin 3.
As stated in the previous subsection, the first two steps

brings a Pauli-Z gate into being. Then, in step three,
when a Z operation is applied to spin 3, the states |0〉
and −|1〉 become |1〉 and |0〉, respectively. As a result, a
Pauli-X gate is completed.

Besides, by making use of a Pauli-X and Pauli-Z gates,
we can achieve a Pauli-Y gate. Furthermore, based on the

Pauli gates, a Hadamard gate can be implemented if we
utilize a

√
Z rotation after a Pauli-Z gate.

2.3 Complement

As shown in the previous subsections, we give these

four single-qubit quantum gates using Abelian 1/2-anyons
in the Kitaev model. If the Abelian anyons which we use

is not Abelian 1/2-anyons, we can simulate more single-
qubit quantum gates, e.g., the phase gate. Using the steps

by which we simulate the Pauli-Z gate, we can create a
phase gate. The difference is that the phase factor is not

−1 any longer but exp(i2πkα) when we braid different
kinds of anyons. Thus, single-qubit quantum gates can be

simulated by Abelian anyons.

3 CNOT Gate

In this part, we simulate two-qubit CNOT gate by

means of Abelian 1/2-anyons in the Kitaev model. Be-
cause six spins are enough to show the braiding operation,

we need ten spins at least to bring the CNOT gate into
being. As shown in Fig. 4, the red part is the control

qubit in state |a〉 (a = 0, 1), while the black part is the
target qubit in state |b〉 (b = 0, 1). We need three steps to

simulate the CNOT gate.

Fig. 4 The simulation of the CNOT gate. The red part
is the control qubit in state |a〉 with a = 0, 1, while the
black part is the target qubit in state |b〉 with b = 0, 1.

(i) Apply X operation on spin 4.

(ii) Perform X operations on spins 6, 5, 3, 4 for a+ 2

circles.

(iii) Use Za operation on spin 3.

When the state of the control qubit is the ground state

|0〉, we have a = 0. In step one, two m particles are cre-

ated on plaquettes f1 and f3. In step two, we use sevenX

operations on spins 6, 5, 3, 4, 6, 5, and 3 sequentially. In

this step, since we braid around the vertex under spin 3 for

two circles, there will be no particles and thus extra phase

produced. No matter what the state of the target qubit

is, there is no change for its state. In the next procedure,

because Z0 = 1, the target qubit remains itself.

Now, we consider the control qubit to be in the excited

state |1〉, namely a = 1. Step one also creates two m par-

ticles on plaquettes f1 and f3. In step two, we perform

eleven X operations on spins 6, 5, 3, 4, 6, 5, 3, 4, 6, 5, and

3, one by one. Obviously, we braid around the vertex un-

der spin 3 for three circles. If the state of the target qubit

is |0〉, it remains |0〉 after step two. Otherwise, it becomes

−|1〉. Through a Z rotation in step three, we transform |0〉
and −|1〉 into |1〉 and |0〉, respectively. Thus, the CNOT

gate is finished.

4 Grover Algorithm

Grover algorithm is one of the most famous algorithms

in quantum computing.[26] It is a searching algorithm over

an unsorted database, and its potential wide applications

in science and engineering problems.[27] It also plays a

role in quantum communication such as quantum secret

sharing.[28−29]

The Grover algorithm consists of four steps: i) In-

verse of the marked state; ii) A Hadamard–Walsh trans-

formation; iii) Inversion of the |0〉 state and iv) Another

Hadamard–Walsh transformation. The success rate of this

original Grover algorithm is not 100%. An exact Grover

algorithm was constructed,[30] using the phase matching

condition.[31−32]

We use a 2-qubit case as an example. The two-qubit

case Grover algorithm is special because the Grover al-

gorithm also finds the marked state with full probability.

Though this fact has been known more than 10 years ago,

its rigorous proof was given only recently by using very

advanced mathematical tools.[33]

The state of the 2-qubit system can be written as

|ψ〉 =

√

1

4
(|00〉 + |01〉 + |10〉 + |11〉) . (4)

We assume to find the marked state |11〉. As shown in

Fig. 2, in Kitaev model, |00〉 is a blanket state. When a

Pauli-Z operator acts on spin 3, two e particles are cre-

ated on the both vertices connected to that spin, and this

case is the state |01〉. When a Pauli-X operator acts on

spin 4, two m particles are created on f1 and f3, the state

becomes |10〉. |11〉 is the state which has two e particles

on two vertices connected to spin 3 and two m particles
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on f1 and f3. Here we have |α〉 = |11〉 and

|β〉 =

√

1

3
(|00〉 + |01〉+ |10〉) . (5)

The four steps of one round of search process can be
realized as what follows.

(i) The inversion operation Iα can be written as Iα =
I − 2|α〉〈α|. To realize this operation, we perform four X
operators on spins 6, 5, 3, and 4 in turn. After these oper-
ations, the marked state |α〉 becomes −|α〉. Those four X
operators constitute a braiding operation. In the braiding
operation, an m particle goes around an e particle, the
process creates a phase −1.

(ii) Perform Hadamard–Walsh gate on single qubit |0〉
and |1〉. The Hadamard–Walsh gate on a single qubit pro-
duces the following change,

H |0〉 =

√

1

2
(|0〉 + |1〉) , (6)

H |1〉 =

√

1

2
(|0〉 − |1〉) . (7)

(iii) The inversion operation I0 = I − 2|0〉〈0|. Inverts
the sign of |00〉 component. To realize this operation, we
first perform one Z operator on spin 3. Then we use four

X operators on spin 4, 6, 5, and 3 in turn. At last, Z

operator is performed on spin 3 again. After using these

operations, |00〉 becomes −|00〉 and other states remain

themselves.

(iv) Use Hadamard–Walsh gate again.

It will find the marked state |α〉 after using these four

steps for only one round. It is interesting to note that

the two inversion operations contain the essential part of

a CNOT gate, and it is to find out this by comparing the

operations in step 1 and step 3 in the Grover algorithm

and that in the CNOT.

5 Conclusion

In this paper, by making use of Abelian anyons in the

Kitaev model, we propose a scheme to simulate single-

qubit gates and the CNOT gate. We establish a relation

between anyons and quantum information. In the light

of Refs. [24–25], we use six-spin Kitaev model to simu-

late single-qubit gates. Besides, ten-spin Kitaev model is

utilized to simulate the CNOT gate. Based on the above

quantum gates, we can also put forward a proposal for

realizing the Grover algorithm in the Kitaev spin lattice

model.
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